题意:输入两个数字L,U,0<U-L<=1e6,1<=L<U<=2147483647,找到最近的相邻素数和最远的相邻素数。
完成这道题需要细心,读完题后我们可以找到解决问题的思路:由于”L and U (1<=L< U<=2,147,483,647)“,开一个2147483647的数组显然不能满足内存要求,又由于”The difference between L and U will not exceed 1,000,000.“,我们能够把数组长度设置为1e6+1,怎样筛去L,U间的合数呢?最大合数的质因子一定有小于U^0.5的,这样质因子小于5e4,故找到50000内的所有素数然后用它们可以删除所有的合数。(总不能先删除1---2147483647所有的合数再来干事儿吧~~)。为了更快,可以用快速筛选。对了,注意1的问题,还有删除L--U的合数时要设置好起点start 。
#include <iostream> #include<cstdio> #include<cstring> using namespace std; #define LL long long const unsigned int maxn=1e6+1; bool tag[50001]; LL p[50001],cnt,N=50000; //找到50000以内的素数即可筛除所有的合数(5e4*5e4 = 2.5e9>int上界) LL midprime[maxn]; // 仅仅存储U,L 之间的素数(不用bool[U-L]的思路来做,防止数组过大带来麻烦。) void getprime() { cnt = 0; for (int i = 2; i <= N; i++)//快速筛选 { if (!tag[i]) p[++cnt] = i; // tag[i]==0 means primer. for (int j = 1; j <= cnt && p[j] * i <= N; j++) { tag[i*p[j]] = 1; if (i % p[j] == 0)break; } } } int main() { getprime(); LL L,U,i; while(~scanf("%lld%lld",&L,&U)){ while(L<2)L++; memset(midprime,0,sizeof(midprime)); for(i=1;i<=cnt;i++){ // clear composite number between L and U. LL start=L+(p[i]-L%p[i]); //start is a prime which is not less than L if(L%p[i]==0)start-=p[i]; //4 17 : for p[i]=2, start=4 if(start==p[i])start+=p[i]; // 2 17: for p[i]=2, start=4 ,4 8 ---are cleared //cout<<"p[i]= start = "<<p[i]<<" "<<start<<endl; for(LL j=start;j<=U;j+=p[i]){ midprime[j-L]=1; // j is ont a prime } } //for(i=L;i<=U;i++)if(!midprime[i-L])cout<<i<<" "; cout<<endl; LL close=1e6+1,far=-1,A1=0,A2=0,B1=0,B2=0,mark=0,pre=0; for(i=L;i<=U;i++){ if(!midprime[i-L]){ if(mark){ if(close>i-pre){ close=i-pre; A1=pre; A2=i; } if(far<i-pre){ far=i-pre; B1=pre; B2=i; } pre=i; } else { pre=i; mark=1; } } } if(!A2)printf("There are no adjacent primes.\n"); else printf("%lld,%lld are closest, %lld,%lld are most distant.\n",A1,A2,B1,B2); } return 0; }