HDU 3126

/* * 解法: 很明显是几何 + 最小费用最大流, 关键是如何建图. * 1. 设置一个源点和汇点. * 2. 每个lich和每个wisp分别用一个点来表示. * 3. 如果第i个lich能攻击到第j个wisp, 那么在图中从lich[i]到wisp[j]增加一条边, 容量为1, 费用为0. * 4. 每个wisp连一条边到汇点, 容量为1, 费用为0. * 5. 源点到每个lich连k条边, k为每个lich能攻击到的wisp数量, 每条边的容量为1, 第i条边的费用为i * t (i为0 - k-1, t为lich的cooldown时间) * 运行最小费用最大流, 答案就是从源点到lich满流的边, 且费用最大的那条边的费用值. */ #include <iostream> #include <math.h> using namespace std; const int maxn = 205; const double eps = 1e-8; typedef int typef; typedef int typec; #define inff 0x0fffffff #define infc 0x0fffffff #define V 500 #define E 200000 struct network { int nv, ne, pnt[E], nxt[E]; int vis[V], que[V], head[V], pv[V], pe[V]; typef flow, cap[E]; typec cost, dis[E], d[V]; void addedge(int u, int v, typef c, typec w) { pnt[ne] = v; cap[ne] = c; dis[ne] = w; nxt[ne] = head[u]; head[u] = ne++; pnt[ne] = u; cap[ne] = 0; dis[ne] = -w; nxt[ne] = head[v]; head[v] = ne++; } int mincost(int src, int sink) { int i, k, f, r; typef mxf; for(flow = 0, cost = 0; ; ) { memset(pv, -1, sizeof(pv)); memset(vis, 0, sizeof(vis)); for(i = 0; i < nv; ++i) d[i] = infc; d[src] = 0; pv[src] = src; vis[src] = 1; for(f = 0, r = 1, que[0] = src; r != f; ) { i = que[f++]; vis[i] = 0; if(V == f) f = 0; for(k = head[i]; k != -1; k = nxt[k]) if(cap[k] && dis[k]+d[i] < d[pnt[k]]) { d[pnt[k]] = dis[k] + d[i]; if(0 == vis[pnt[k]]) { vis[pnt[k]] = 1; que[r++] = pnt[k]; if(V == r) r = 0; } pv[pnt[k]] = i; pe[pnt[k]] = k; } } if(-1 == pv[sink]) break; for(k = sink, mxf = inff; k != src; k = pv[k]) if(cap[pe[k]] < mxf) mxf = cap[pe[k]]; flow += mxf; cost += d[sink] * mxf; for(k = sink; k != src; k = pv[k]) { cap[pe[k]] -= mxf; cap[pe[k]^1] += mxf; } } return cost; } void init(int v) { nv = v; ne = 0; memset(head, -1, 4 * v); } } nw; struct Lich { double x, y, r; int t; void input() { scanf("%lf %lf %lf %d", &x, &y, &r, &t); } } lich[maxn]; struct Wisp { double x, y; void input() { scanf("%lf %lf", &x, &y); } } wisp[maxn]; struct Tree { double x, y, r; void input() { scanf("%lf %lf %lf", &x, &y, &r); } } tree[maxn]; int T, N, M, K; int ecnt[maxn]; double Dot(double dx1, double dy1, double dx2, double dy2) { return dx1 * dx2 + dy1 * dy2; } double Dis(double x0, double y0, double x1, double y1, double x2, double y2) { double a, b, c; if (fabs(x1 - x2) > fabs(y1 - y2)) { b = 1.0; a = b * (y2 - y1) / (x1 - x2); c = -(a * x1 + b * y1); } else { a = 1.0; b = a * (x2 - x1) / (y1 - y2); c = -(a * x1 + b * y1); } return fabs(a * x0 + b * y0 + c) / sqrt(a * a + b * b); } bool NoCross(int a, int b) { int i; for (i = 0; i < K; i++) { if (Dot(tree[i].x - lich[a].x, tree[i].y - lich[a].y, wisp[b].x - lich[a].x, wisp[b].y - lich[a].y) > 0.0 && Dot(tree[i].x - wisp[b].x, tree[i].y - wisp[b].y, lich[a].x - wisp[b].x, lich[a].y - wisp[b].y) > 0.0 && Dis(tree[i].x, tree[i].y, lich[a].x, lich[a].y, wisp[b].x, wisp[b].y) < tree[i].r + eps) return false; } return true; } bool InRound(int i, int j) { double dx = lich[i].x - wisp[j].x; double dy = lich[i].y - wisp[j].y; return sqrt(dx * dx + dy * dy) < lich[i].r + eps; } void BuildGraph() { int i, j; for (i = 0; i < N; i++) { ecnt[i] = 0; for (j = 0; j < M; j++) { if (InRound(i, j) && NoCross(i, j)) { ecnt[i]++; nw.addedge(i, N + j, 1, 0); } } } for (i = 0; i < N; i++) { for (j = 0; j < ecnt[i]; j++) nw.addedge(N + M, i, 1, lich[i].t * j); } for (i = 0; i < M; i++) nw.addedge(N + i, N + M + 1, 1, 0); } void Solve() { nw.mincost(N + M, N + M + 1); if (nw.flow != M) { printf("-1/n"); return; } int ans = 0; for (int p = nw.head[N+M]; p != -1; p = nw.nxt[p]) { if (nw.cap[p] == 0 && nw.dis[p] > ans) ans = nw.dis[p]; } printf("%d/n", ans); } int main() { int i; for (scanf("%d", &T); T; T--) { scanf("%d %d %d", &N, &M, &K); for (i = 0; i < N; i++) lich[i].input(); for (i = 0; i < M; i++) wisp[i].input(); for (i = 0; i < K; i++) tree[i].input(); nw.init(N + M + 2); BuildGraph(); Solve(); } return 0; } 

你可能感兴趣的:(c,struct,tree,input,NetWork)