supervisor是storm集群重要组成部分,supervisor主要负责管理各个"工作节点"。supervisor与zookeeper进行通信,通过zookeeper的"watch机制"可以感知到是否有新的任务需要认领或哪些任务被重新分配。我们可以通用执行bin/storm supervisor >/dev/null 2>&1 &来启动supervisor。bin/storm是一个python脚本,在这个脚本中定义了一个supervisor函数:
supervisor函数
def
supervisor(
klass
=
"backtype.storm.daemon.supervisor"
):
"""Syntax: [storm supervisor]
Launches the supervisor daemon. This command should be run
under supervision with a tool like daemontools or monit.
See Setting up a Storm cluster for more information.
(https://github.com/nathanmarz/storm/wiki/Setting-up-a-Storm-cluster)
"""
cppaths
=
[
STORM_DIR
+
"/log4j"
,
STORM_DIR
+
"/conf"
]
jvmopts
=
parse_args(
confvalue(
"supervisor.childopts"
,
cppaths))
+
[
"-Dlogfile.name=supervisor.log"
,
"-Dlog4j.configuration=storm.log.properties"
,
]
exec_storm_class(
klass
,
jvmtype
=
"-server"
,
extrajars
=
cppaths
,
jvmopts
=
jvmopts)
klass参数的默认值为backtype.storm.daemon.supervisor,backtype.storm.daemon.supervisor标识一个java类。STORM_DIR标识storm的安装目录,cppaths集合存放了log4j配置文件路径和storm配置文件storm.yaml路径,jvmopts存放传递给jvm的参数,包括log4j配文件路径、storm.yaml路径、log4j日志名称和log4j配置文件名称。exec_storm_class函数的逻辑比较简单,具体实现如下:
exec_storm_class函数
def
exec_storm_class(
klass
,
jvmtype
=
"-server"
,
jvmopts
=
[],
extrajars
=
[],
args
=
[],
fork
=
False
):
global
CONFFILE
all_args
=
[
"java"
,
jvmtype
,
get_config_opts
(),
"-Dstorm.home="
+
STORM_DIR
,
"-Djava.library.path="
+
confvalue(
"java.library.path"
,
extrajars
),
"-Dstorm.conf.file="
+
CONFFILE
,
"-cp"
,
get_classpath(
extrajars
),
]
+
jvmopts
+
[
klass
]
+
list(
args)
print
"Running: "
+
" "
.
join(
all_args)
if
fork
:
os
.
spawnvp(
os
.
P_WAIT
,
"java"
,
all_args)
else
:
os
.
execvp(
"java"
,
all_args)
# replaces the current process and never returns
get_config_opts()获取jvm的默认配置信息,confvalue("java.library.path", extrajars)获取storm使用的本地库JZMQ加载路径,get_classpath(extrajars)获取所有依赖jar包的完整路径,然后拼接一个java -cp命令运行klass的main方法。klass默认值为backtype.storm.daemon.supervisor,所以exec_storm_class函数最终调用backtype.storm.daemon.supervisor类的main方法。
backtype.storm.daemon.supervisor类定义在supervisor.clj文件中,定义如下:
backtype.storm.daemon.supervisor类
(ns
backtype.storm.daemon.supervisor
(
:import
[
backtype.storm.scheduler
ISupervisor
])
(
:use
[
backtype.storm
bootstrap
])
(
:use
[
backtype.storm.daemon
common
])
(
:require
[
backtype.storm.daemon
[
worker
:as
worker
]])
(
:gen-class
:methods
[
^
{
:static
true
}
[
launch
[
backtype.storm.scheduler.ISupervisor
]
void
]]))
(
bootstrap)
;; ... ...
;; 其他方法
;; ... ...
(
defn
-main
[]
(
-launch (
standalone-supervisor)))
:gen-class指示Clojure生成Java类backtype.storm.daemon.supervisor,并且声明一个静态方法launch,launch方法接收一个实现backtype.storm.scheduler.ISupervisor接口的实例作为参数。launch函数的参数是由standalone-supervisor函数生成的。standalone-supervisor函数定义如下:返回一个实现ISupervisor接口的实例。
standalone-supervisor函数
;; 该函数主要返回一个实现了ISupervisor接口的实例。
(
defn
standalone-supervisor
[]
(
let
[
conf-atom (
atom
nil)
id-atom (
atom
nil
)]
(
reify
ISupervisor
;; prepare方法主要功能是创建一个基于磁盘的存放K/V对的database——LocalState对象,LocalState类参见其定义部分
(
prepare
[
this
conf
local-dir
]
;; conf-atom原子类型,绑定storm集群配置信息
(
reset!
conf-atom
conf)
;; state绑定LocalState对象,local-dir标识database在磁盘上的根目录,database实际就是一个HashMap对象序列化后存放到磁盘local-dir目录下
(
let
[
state (
LocalState.
local-dir)
;; LS-ID值为字符串"supervisor-id",定义在common.clj文件中。如果state中存放了该supervisor的id,那么curr-id绑定该id,否则curr-id绑定32为uuid
curr-id (
if-let
[
id (
.get
state
LS-ID
)]
id
;; 调用uuid函数生成一个32的id
(
generate-supervisor-id
))]
;; 调用state的put函数,更新该supervisor的id
(
.put
state
LS-ID
curr-id)
;; id-atom原子类型,绑定该supervisor的id
(
reset!
id-atom
curr-id))
)
;; 返回true
(
confirmAssigned
[
this
port
]
true)
;; 从storm配置信息中获取supervisor的所有端口,因为clojure中的map函数返回的是"懒惰序列",所以需要调用doall函数对"懒惰序列"进行完全实例化
(
getMetadata
[
this
]
(
doall (
map int (
get
@
conf-atom
SUPERVISOR-SLOTS-PORTS))))
;; 获取supervisor的id
(
getSupervisorId
[
this
]
@
id-atom)
;; 获取supervisor的分配id即其id
(
getAssignmentId
[
this
]
@
id-atom)
;; killedWorker空实现
(
killedWorker
[
this
port
]
)
;; assigned空实现
(
assigned
[
this
ports
]
))))
LocalState类是个java类,定义见LocalState.java,这个类有一个VersionedStore类型对象,VersionedStore类见VersionedStore.java,由于这两个类是java实现,而且也比较简单,这样就在详细分析。
mk-supervisor函数定义如下:
mk-supervisor函数
;; conf绑定storm集群配置信息,isupervisor绑定standalone-supervisor函数返回的实现ISupervisor接口的实例
(
defserverfn
mk-supervisor
[
conf
shared-context
^
ISupervisor
isupervisor
]
、
;; 打印日志信息
(
log-message
"Starting Supervisor with conf "
conf)
;; supervisor-isupervisor-dir函数调用了supervisor-local-dir函数,supervisor-local-dir函数从storm配置中获取storm的安装路径,然后在supervisor上创建目录{storm.local.dir}/supervisor,并返回目录
;; supervisor-isupervisor-dir函数返回字符串"{storm.local.dir}/supervisor/isupervisor"作为一个LocalState对象的根目录,该LocalState对象只用来存放supervisor的id
;; 调用isupervisor的prepare方法,创建一个LocalState对象,并生成该supervisor的id,将其存入LocalState对象
(
.prepare
isupervisor
conf (
supervisor-isupervisor-dir
conf))
;; supervisor-tmp-dir函数在supervisor上创建{storm.local.dir}/supervisor/tmp目录;FileUtils类的cleanDirectory方法清空该目录
(
FileUtils/cleanDirectory (
File. (
supervisor-tmp-dir
conf)))
;; supervisor绑定supervisor元数据信息,supervisor-data参见其定义部分
(
let
[
supervisor (
supervisor-data
conf
shared-context
isupervisor)
;; event-manager和processes-event-manager分别绑定一个EventManager实例,managers绑定包含两个EventManager实例的集合。event-manager函数请参见文章"storm事件管理器EventManager源码分析-event.clj"
[
event-manager
processes-event-manager
:as
managers
]
[(
event/event-manager
false) (
event/event-manager
false
)]
;; partial用于定义"偏函数",所谓偏函数就是给一个指定函数的某些参数预赋值,这样就得到了一个新函数。sync-processes就绑定这个新函数,sync-processes参见其定义部分
sync-processes (
partial
sync-processes
supervisor)
;; synchronize-supervisor绑定一个函数,该函数主要功能就是当assignment发生变化时, 从nimbus同步topology的代码到本地,当assignment发生变化时, check workers状态, 保证被分配的work的状态都是valid
synchronize-supervisor (
mk-synchronize-supervisor
supervisor
sync-processes
event-manager
processes-event-manager)
;; heartbeat-fn绑定一个匿名函数,该匿名函数主要功能是调用StormClusterState实例的supervisor-heartbeat!函数将该supervisor的心跳信息SupervisorInfo实例写入zookeeper的"/supervisors/supervisor-id"节点中
heartbeat-fn (
fn
[] (
.supervisor-heartbeat!
;; StormClusterState实例
(
:storm-cluster-state
supervisor)
;; supervisor-id
(
:supervisor-id
supervisor)
;; 创建SupervisorInfo实例,即该supervisor的心跳信息
(
SupervisorInfo. (
current-time-secs)
;; 主机名
(
:my-hostname
supervisor)
;; assignment-id即supervisor-id
(
:assignment-id
supervisor)
;; 当前集群已使用的所有port
(
keys
@(
:curr-assignment
supervisor))
;; used ports
;; 该supervisor上所有可用port,即在storm配置文件中配置的port
(
.getMetadata
isupervisor)
(
conf
SUPERVISOR-SCHEDULER-META)
;; supervisor启动时间
((
:uptime
supervisor
)))))]
;; 调用heartbeat-fn绑定的匿名函数,将supervisor心跳心跳写入zookeeper
(
heartbeat-fn)
;; should synchronize supervisor so it doesn't launch anything after being down (optimization)
;; 调用timer.clj中的schedule-recurring函数向该supervisor的定时器中添加一个周期执行的定时任务heartbeat-fn--"向zookeeper汇报superior的心跳信息",关于storm定时器的详细信息请参看"storm定时器timer源码分析-timer.clj"
(
schedule-recurring (
:timer
supervisor)
0
;; 指定每隔多长时间汇报一次心跳信息
(
conf
SUPERVISOR-HEARTBEAT-FREQUENCY-SECS)
heartbeat-fn)
;; 如果supervisor.enable值为true时(默认值就是true,而且不会改变,所以一定会执行),那么将synchronize-supervisor绑定的函数(mk-synchronize-supervisor函数返回的函数)每隔10s加入event-manager事件管理器中,
;; 这样即使zookeeper的"watcher机制"异常时,supervisor也可以主动的获取分配信息的变化。同时将sync-processes绑定的函数(sync-processes函数)每隔SUPERVISOR-MONITOR-FREQUENCY-SECS秒加入processes-event-manager事件管理器中,
;; 这样即使zookeeper的"watcher机制"异常时,supervisor也可以正常管理worker
(
when (
conf
SUPERVISOR-ENABLE)
;; This isn't strictly necessary, but it doesn't hurt and ensures that the machine stays up
;; to date even if callbacks don't all work exactly right
(
schedule-recurring (
:timer
supervisor)
0
10 (
fn
[] (
.add
event-manager
synchronize-supervisor)))
(
schedule-recurring (
:timer
supervisor)
0
(
conf
SUPERVISOR-MONITOR-FREQUENCY-SECS)
(
fn
[] (
.add
processes-event-manager
sync-processes))))
(
log-message
"Starting supervisor with id " (
:supervisor-id
supervisor)
" at host " (
:my-hostname
supervisor))
;; 返回实现了Shutdownable接口、SupervisorDaemon协议和DaemonCommon协议的实例
(
reify
Shutdownable
;; 关闭supervisor,就是关闭该supervisor所拥护的资源
(
shutdown
[
this
]
(
log-message
"Shutting down supervisor " (
:supervisor-id
supervisor))
(
reset! (
:active
supervisor)
false)
(
cancel-timer (
:timer
supervisor))
(
.shutdown
event-manager)
(
.shutdown
processes-event-manager)
(
.disconnect (
:storm-cluster-state
supervisor)))
SupervisorDaemon
;; 返回集群配置信息
(
get-conf
[
this
]
conf)
;; 返回supervisor-id
(
get-id
[
this
]
(
:supervisor-id
supervisor))
;; 见名知意,关闭所有worker
(
shutdown-all-workers
[
this
]
(
let
[
ids (
my-worker-ids
conf
)]
(
doseq
[
id
ids
]
(
shutdown-worker
supervisor
id)
)))
DaemonCommon
(
waiting?
[
this
]
(
or (
not
@(
:active
supervisor))
(
and
;; 定时器线程是否处于sleep状态
(
timer-waiting? (
:timer
supervisor))
;; 调用事件管理器的waiting?函数检查event-manager和processes-event-manager内事件执行线程是否处于sleep状态,memfn宏可以自动生成代码以使得java方法可以当成clojure里面的函数
(
every? (
memfn
waiting?)
managers)))
))))
supervisor-data函数定义如下:
supervisor-data函数返回一个包含了supervisor元数据的map对象。
supervisor-data函数
(
defn
supervisor-data
[
conf
shared-context
^
ISupervisor
isupervisor
]
;; 保存集群配置信息
{
:conf
conf
;; 启动supervisor时,shared-context为nil
:shared-context
shared-context
;; 保存supervisor实例
:isupervisor
isupervisor
;; 保存supervisor是否是活跃的(默认是活跃的)
:active (
atom
true)
;; 保存supervisor启动时间
:uptime (
uptime-computer)
;; 保存工作线程id
:worker-thread-pids-atom (
atom
{})
;; 保存StormClusterState对象
:storm-cluster-state (
cluster/mk-storm-cluster-state
conf)
;; 保存supervisor的LocalState对象,该LocalState对象的根目录是"{storm.local.dir}/supervisor/localstate"
:local-state (
supervisor-state
conf)
;; 保存supervisor的id
:supervisor-id (
.getSupervisorId
isupervisor)
;; 保存supervisor的分配id,分配id与supervisor_id相同
:assignment-id (
.getAssignmentId
isupervisor)
;; 保存supervisor的主机名,如果配置conf(map对象)中包含"storm.local.hostname",那么就使用配置的主机名,否则通过调用InetAddress.getLocalHost().getCanonicalHostName()获取主机名
:my-hostname (
if (
contains?
conf
STORM-LOCAL-HOSTNAME)
(
conf
STORM-LOCAL-HOSTNAME)
(
local-hostname))
;; 心跳时汇报当前集群的所有分配信息
:curr-assignment (
atom
nil)
;; used for reporting used ports when heartbeating
;; 保存一个storm定时器timer,kill-fn函数会在timer-thread发生exception的时候被调用
:timer (
mk-timer
:kill-fn (
fn
[
t
]
(
log-error
t
"Error when processing event")
(
exit-process!
20
"Error when processing an event")
))
;; 创建一个用于存放带有版本号的分配信息的map
:assignment-versions (
atom
{})
})
sync-processes函数定义如下:
sync-processes函数
;; sync-processes函数用于管理workers, 比如处理不正常的worker或dead worker, 并创建新的workers
;; supervisor标识supervisor的元数据
(
defn
sync-processes
[
supervisor
]
;; conf绑定storm的配置信息map
(
let
[
conf (
:conf
supervisor)
;; local-state绑定supervisor的LocalState实例
^
LocalState
local-state (
:local-state
supervisor)
;; 从supervisor的LocalState实例中获取本地分配信息端口port->LocalAssignment实例的map,LocalAssignment实例封装了storm-id和分配给该storm-id的executors
assigned-executors (
defaulted (
.get
local-state
LS-LOCAL-ASSIGNMENTS)
{})
;; now绑定当前时间
now (
current-time-secs)
;; allocated绑定worker-id->worker状态和心跳的map,read-allocated-workers函数请参见其定义部分
allocated (
read-allocated-workers
supervisor
assigned-executors
now)
;; 过滤掉allocated中state不等于:valid的元素,并将过滤后的结果绑定到keepers
keepers (
filter-val
(
fn
[[
state
_
]] (
=
state
:valid))
allocated)
;; keep-ports绑定keepers中心跳信息所包含的端口
keep-ports (
set (
for
[[
id
[
_
hb
]]
keepers
] (
:port
hb)))
;; reassign-executors绑定assigned-executors中端口不在集合keep-ports的键值对构成的map,也就是说已分配的线程所对应的进程挂掉了,需要重新进行分配
reassign-executors (
select-keys-pred (
complement
keep-ports)
assigned-executors)
;; new-worker-ids绑定port->worker-id的map,new-worker-ids保存了需要重新启动进程的worker-id
new-worker-ids (
into
{}
(
for
[
port (
keys
reassign-executors
)]
[
port (
uuid
)]))
]
;; 1. to kill are those in allocated that are dead or disallowed
;; 2. kill the ones that should be dead
;; - read pids, kill -9 and individually remove file
;; - rmr heartbeat dir, rmdir pid dir, rmdir id dir (catch exception and log)
;; 3. of the rest, figure out what assignments aren't yet satisfied
;; 4. generate new worker ids, write new "approved workers" to LS
;; 5. create local dir for worker id
;; 5. launch new workers (give worker-id, port, and supervisor-id)
;; 6. wait for workers launch
(
log-debug
"Syncing processes")
(
log-debug
"Assigned executors: "
assigned-executors)
(
log-debug
"Allocated: "
allocated)
;; allocated绑定worker-id->worker状态和心跳的map,id绑定worker-id,state绑定worker状态,heartbeat绑定worker心跳时间
(
doseq
[[
id
[
state
heartbeat
]]
allocated
]
;; 如果worker的状态不是:valid,那么就关闭worker
(
when (
not=
:valid
state)
(
log-message
"Shutting down and clearing state for id "
id
". Current supervisor time: "
now
". State: "
state
", Heartbeat: " (
pr-str
heartbeat))
;; shutdown-worker函数关闭进程,shutdown-worker函数请参见其定义部分
(
shutdown-worker
supervisor
id)
))
;; new-worker-ids保存了需要重新启动进程的worker-id,遍历new-worker-ids,为每个worker-id创建本地目录"{storm.local.dir}/workers/{worker_id}"
(
doseq
[
id (
vals
new-worker-ids
)]
(
local-mkdirs (
worker-pids-root
conf
id)))
;; 将合并后的map重新保存到local-state的LS-APPROVED-WORKERS中
(
.put
local-state
LS-APPROVED-WORKERS
;; 将new-worker-ids的键值交换由原来的port->worker-id转换成worker-id->port,并与local-state的LS-APPROVED-WORKERS合并
(
merge
;; select-keys函数从local-state的LS-APPROVED-WORKERS中获取key包含在keepers中的键值对,返回结果是一个map
(
select-keys (
.get
local-state
LS-APPROVED-WORKERS)
(
keys
keepers))
;; zipmap函数返回new-worker-ids的worker-id->port的map
(
zipmap (
vals
new-worker-ids) (
keys
new-worker-ids))
))
;; wait-for-workers-launch函数等待所有worker启动完成,请参见wait-for-workers-launch函数定义部分
(
wait-for-workers-launch
conf
;; assignment绑定在该port运行的executor信息
(
dofor
[[
port
assignment
]
reassign-executors
]
;; id为port所对应的worker-id
(
let
[
id (
new-worker-ids
port
)]
(
log-message
"Launching worker with assignment "
(
pr-str
assignment)
" for this supervisor "
(
:supervisor-id
supervisor)
" on port "
port
" with id "
id
)
;; launch-worker函数负责启动worker,关于worker启动的相关分析会在以后的文章中详细介绍,在此不再介绍
(
launch-worker
supervisor
(
:storm-id
assignment)
port
id)
id)))
))
read-allocated-workers函数定义如下:
read-allocated-workers函数
;; 返回worker-id->worker状态和心跳的map,如果worker心跳为nil,那么worker是"dead"
(
defn
read-allocated-workers
"Returns map from worker id to worker heartbeat. if the heartbeat is nil, then the worker is dead (timed out or never wrote heartbeat)"
;; supervisor绑定supervisor元数据,assigned-executors绑定supervisor分配信息端口port->LocalAssignment实例的map,now绑定当前时间
[
supervisor
assigned-executors
now
]
;; 获取集群配置信息
(
let
[
conf (
:conf
supervisor)
;; 获取supervisor的LocalState实例
^
LocalState
local-state (
:local-state
supervisor)
;; id->heartbeat绑定supervisor上运行进程的worker-id->心跳信息的map
id->heartbeat (
read-worker-heartbeats
conf)
;; approved-ids绑定supervisor的LocalState实例中保存的worker-id的集合
approved-ids (
set (
keys (
.get
local-state
LS-APPROVED-WORKERS
)))]
;; 生成worker-id->[state hb]的map
(
into
{}
(
dofor
[[
id
hb
]
id->heartbeat
]
;; cond相当于if...else嵌套
(
let
[
state (
cond
;; 如果心跳信息为nil,那么state值为:not-started关键字
(
not
hb)
:not-started
;; 如果approved-ids不包含id或者matches-an-assignment?返回false,那么state值为:disallowed关键字
(
or (
not (
contains?
approved-ids
id))
;; matches-an-assignment?函数通过比较心跳信息和分配信息中的storm-id和线程id集合是否相同,来判定该worker是否已分配
(
not (
matches-an-assignment?
hb
assigned-executors)))
:disallowed
;; 如果当前时间-上次心跳时间>心跳超时时间,state值为:timed-out关键字
(
> (
-
now (
:time-secs
hb))
(
conf
SUPERVISOR-WORKER-TIMEOUT-SECS))
:timed-out
;; 以上条件均不满足时,state值为:valid关键字
true
:valid
)]
(
log-debug
"Worker "
id
" is "
state
": " (
pr-str
hb)
" at supervisor time-secs "
now)
[
id
[
state
hb
]]
))
)))
read-worker-heartbeats函数定义如下:
read-worker-heartbeats函数
;; 获取supervisor上运行进程的worker-id->心跳信息的map
(
defn
read-worker-heartbeats
"Returns map from worker id to heartbeat"
[
conf
]
;; ids绑定supervisor上进程的worker-id集合
(
let
[
ids (
my-worker-ids
conf
)]
;; 生成worker-id->心跳信息的map
(
into
{}
(
dofor
[
id
ids
]
;; read-worker-heartbeat函数获取指定worker-id的心跳信息,从supervisor上"{storm.local.dir}/workers/{worker-id}/heartbeats"中获取心跳信息
[
id (
read-worker-heartbeat
conf
id
)]))
))
my-worker-ids函数定义如下:
my-worker-ids函数
;; 获取supervisor上运行的进程的worker-id
(
defn
my-worker-ids
[
conf
]
;; worker-root函数返回supervisor本地目录"{storm.local.dir}/workers",read-dir-contents函数获取目录"{storm.local.dir}/workers"下所有文件名的集合(即该supervisor上正在运行的所有进程的worker-id)
(
read-dir-contents (
worker-root
conf)))
matches-an-assignment?函数定义如下:
matches-an-assignment?函数
;; worker-heartbeat标识心跳信息,assigned-executors标识supervisor分配信息port->LocalAssignment实例的map
(
defn
matches-an-assignment?
[
worker-heartbeat
assigned-executors
]
;; 从worker-heartbeat中获取进程占用的端口,进而从assigned-executors中获取LocalAssignment实例
(
let
[
local-assignment (
assigned-executors (
:port
worker-heartbeat
))]
;; 如果local-assignment不为nil,且心跳信息中的storm-id和分配信息中的storm-id相等,且心跳信息中的线程id集合和分配信息中的线程id集合相等,那么返回true;否则返回false
(
and
local-assignment
(
= (
:storm-id
worker-heartbeat) (
:storm-id
local-assignment))
;; Constants/SYSTEM_EXECUTOR_ID标识"系统bolt"的线程id,我定义的topology除了我们指定的spout和bolt外,还包含一些"系统bolt"
(
= (
disj (
set (
:executors
worker-heartbeat))
Constants/SYSTEM_EXECUTOR_ID)
(
set (
:executors
local-assignment))))))
shutdown-worker函数定义如下:
shutdown-worker函数
;; 关闭进程,supervisor标识supervisor元数据,id标识worker_id
(
defn
shutdown-worker
[
supervisor
id
]
(
log-message
"Shutting down " (
:supervisor-id
supervisor)
":"
id)
;; conf绑定集群配置信
(
let
[
conf (
:conf
supervisor)
;; 注意当storm集群"分布式模式"运行时,supervisor的"{storm.local.dir}/workers/{worker_id}/pids"路径中存放了worker实际对应的jvm进程id
;; 从supervisor的"{storm.local.dir}/workers/{worker_id}/pids"路径获取进程id,worker_id标识我们指定的进程id,pids目录存放了该worker实际对应的jvm进程的id
pids (
read-dir-contents (
worker-pids-root
conf
id))
;; 注意当storm集群"本地模式"运行时,supervisor元数据中关键字:worker-thread-pids-atom所对应的map用于存放worker_id->线程id集合的键值对
;; 先从supervisor元数据中获取worker-id(我们人为分配给worker的id)->jvm进程id的map,thread-pid实际上绑定的是worker的jvm进程id
thread-pid (
@(
:worker-thread-pids-atom
supervisor)
id
)]
;; 当thread-pid不为空时,kill掉该进程
(
when
thread-pid
;; 调用backtype.storm.process-simulator中的kill-process函数kill掉进程
(
psim/kill-process
thread-pid))
;; 遍历pids集合,kill掉每个进程
(
doseq
[
pid
pids
]
;; 调用backtype.storm.util中的kill-process-with-sig-term函数,kill-process-with-sig-term函数又调用了send-signal-to-process函数,send-signal-to-process函数实现比较简单就是执行系统命令"kill -15 pid",kill掉进程
;; 注意在创建worker进程时为worker进程指定了关闭回调函数,当调用"kill -15 pid"关闭worker进程时会触发回调函数执行,回调函数是在worker.clj的mk-worker函数中添加的
(
kill-process-with-sig-term
pid))
;; 如果pids不为空,sleep 1秒,等着"清理函数"--关闭回调函数执行完毕
(
if-not (
empty?
pids) (
sleep-secs
1))
;; allow 1 second for execution of cleanup threads on worker.
;; 通过调用"kill -15 pid"命令未能关闭的进程,将通过调用force-kill-process函数关闭,force-kill-process函数只是调用了"kill -9 pid"命令
(
doseq
[
pid
pids
]
(
force-kill-process
pid)
(
try
;; 删除"{storm.local.dir}/workers/{worker_id}/pids"
(
rmpath (
worker-pid-path
conf
id
pid))
(
catch
Exception
e)))
;; on windows, the supervisor may still holds the lock on the worker directory
;; try-cleanup-worker函数清理本地目录,try-cleanup-worker函数参见其定义部分
(
try-cleanup-worker
conf
id))
(
log-message
"Shut down " (
:supervisor-id
supervisor)
":"
id))
try-cleanup-worker函数定义如下:
try-cleanup-worker函数
;; 清理本地目录
(
defn
try-cleanup-worker
[
conf
id
]
(
try
;; 删除"{storm.local.dir}/workers/{worker_id}/heartbeats"目录
(
rmr (
worker-heartbeats-root
conf
id))
;; this avoids a race condition with worker or subprocess writing pid around same time
;; 删除"{storm.local.dir}/workers/{worker_id}/pids"目录
(
rmpath (
worker-pids-root
conf
id))
;; 删除"{storm.local.dir}/workers/{worker_id}"目录
(
rmpath (
worker-root
conf
id))
(
catch
RuntimeException
e
(
log-warn-error
e
"Failed to cleanup worker "
id
". Will retry later")
)
(
catch
java.io.FileNotFoundException
e (
log-message (
.getMessage
e)))
(
catch
java.io.IOException
e (
log-message (
.getMessage
e)))
))
wait-for-workers-launch函数定义如下:
wait-for-workers-launch函数
;; wait-for-workers-launch函数等待所有worker启动完成
(
defn-
wait-for-workers-launch
[
conf
ids
]
(
let
[
start-time (
current-time-secs
)]
(
doseq
[
id
ids
]
;; 调用wait-for-worker-launch函数
(
wait-for-worker-launch
conf
id
start-time))
))
wait-for-worker-launch函数定义如下:
wait-for-worker-launch函数
;; wait-for-worker-launch函数等待worker启动完成,worker启动完成的条件是:如果worker在规定的心跳超时时间内有一次心跳那么就说明worker成功启动
(
defn-
wait-for-worker-launch
[
conf
id
start-time
]
(
let
[
state (
worker-state
conf
id
)]
(
loop
[]
(
let
[
hb (
.get
state
LS-WORKER-HEARTBEAT
)]
(
when (
and
(
not
hb)
(
<
(
- (
current-time-secs)
start-time)
(
conf
SUPERVISOR-WORKER-START-TIMEOUT-SECS)
))
(
log-message
id
" still hasn't started")
(
Time/sleep
500)
(
recur)
)))
(
when-not (
.get
state
LS-WORKER-HEARTBEAT)
(
log-message
"Worker "
id
" failed to start")
)))
mk-synchronize-supervisor函数定义如下:
mk-synchronize-supervisor函数
;; mk-synchronize-supervisor函数返回一个名字为"this"的函数,
(
defn
mk-synchronize-supervisor
[
supervisor
sync-processes
event-manager
processes-event-manager
]
(
fn
this
[]
;; conf绑定集群配置信息
(
let
[
conf (
:conf
supervisor)
;; storm-cluster-state绑定StormClusterState对象
storm-cluster-state (
:storm-cluster-state
supervisor)
;; isupervisor绑定实现了ISupervisor接口的实例
^
ISupervisor
isupervisor (
:isupervisor
supervisor)
;; local-state绑定LocalState实例
^
LocalState
local-state (
:local-state
supervisor)
;; sync-callback绑定一个匿名函数,这个匿名函数的主要功能就是将上面定义的"this"函数添加到event-manager中,这样"this"函数将会在一个新的线程内执行
;; 每次执行,都需要再一次把sync-callback注册到zookeeper中作为回调函数,以保证下次可以被继续触发,当zookeeper的子节点"/assignments"发生变化时执行回调函数sync-callback
sync-callback (
fn
[
&
ignored
] (
.add
event-manager
this))
;; assignment-versions绑定带有版本号的分配信息,topology-id->分配信息的map
assignment-versions
@(
:assignment-versions
supervisor)
;; assignments-snapshot绑定topoloy-id->分配信息AssignmentInfo对象的map,versions绑定带有版本号的分配信息,assignments-snapshot函数从zookeeper的子节点"/assignments"获取分配信息(当前集群分配信息快照),并将回调函数添加到子节点"/assignments"上,assignments-snapshot函数参见其定义部分
{
assignments-snapshot
:assignments
versions
:versions
} (
assignments-snapshot
storm-cluster-state
sync-callback
assignment-versions)
;; 调用read-storm-code-locations函数获取topology-id->nimbus上该topology代码目录的map
storm-code-map (
read-storm-code-locations
assignments-snapshot)
;; read-downloaded-storm-ids函数从supervisor本地的"{storm.local.dir}/stormdist"目录读取已经下载了代码jar包的topology-id
downloaded-storm-ids (
set (
read-downloaded-storm-ids
conf))
;; all-assignment绑定该supervisor上的所有分配信息,即port->LocalAssignment对象的map
all-assignment (
read-assignments
assignments-snapshot
(
:assignment-id
supervisor))
;; 调用isupervisor对象的confirmAssigned函数验证all-assignment的key即port的有效性,将通过验证的保存到new-assignment中。isupervisor对象是在standalone-supervisor函数中创建的,查看standalone-supervisor函数,我们可以发现isupervisor对象的confirmAssigned函数只是返回true,所以new-assignment=all-assignment
new-assignment (
->>
all-assignment
(
filter-key
#(
.confirmAssigned
isupervisor
%)))
;; assigned-storm-ids绑定分配给该supervisor的topology-id的集合
assigned-storm-ids (
assigned-storm-ids-from-port-assignments
new-assignment)
;; existing-assignment绑定该supervisor上已经存在的分配信息
existing-assignment (
.get
local-state
LS-LOCAL-ASSIGNMENTS
)]
(
log-debug
"Synchronizing supervisor")
(
log-debug
"Storm code map: "
storm-code-map)
(
log-debug
"Downloaded storm ids: "
downloaded-storm-ids)
(
log-debug
"All assignment: "
all-assignment)
(
log-debug
"New assignment: "
new-assignment)
;; download code first
;; This might take awhile
;; - should this be done separately from usual monitoring?
;; should we only download when topology is assigned to this supervisor?
;; storm-code-map绑定当前集群上已分配的所有topology-id->nimbus上代码jar包目录的键值对的map
(
doseq
[[
storm-id
master-code-dir
]
storm-code-map
]
;; 如果downloaded-storm-ids集合不包含该storm-id,且assigned-storm-ids集合包含该storm-id(表明该storm-id需要在该superior上运行,但是该storm-id的代码jar包还没有从nimbus服务器下载到本地),则调用download-storm-code函数下载代码jar包
(
when (
and (
not (
downloaded-storm-ids
storm-id))
(
assigned-storm-ids
storm-id))
(
log-message
"Downloading code for storm id "
storm-id
" from "
master-code-dir)
;; 从nimbus服务器上下载该storm-id相关的代码jar包,序列化后的topology对象,运行时所需的配置信息,并将其保存到"{storm.local.dir}/nimbus/stormdist/{storm-id}/"目录
(
download-storm-code
conf
storm-id
master-code-dir)
(
log-message
"Finished downloading code for storm id "
storm-id
" from "
master-code-dir)
))
(
log-debug
"Writing new assignment "
(
pr-str
new-assignment))
;; existing-assignment与new-assignment的差集表示不需要在该supervisor上运行的分配的集合,所以要把这些分配对应的worker关闭
(
doseq
[p (
set/difference (
set (
keys
existing-assignment))
(
set (
keys
new-assignment
)))]
;; 当前storm版本0.9.2中,killedWorker为空实现,所以什么都没做
(
.killedWorker
isupervisor (
int p)))
;; assigned函数为空实现,什么也没有做
(
.assigned
isupervisor (
keys
new-assignment))
;; 将最新分配信息new-assignment保存到local-state数据库中
(
.put
local-state
LS-LOCAL-ASSIGNMENTS
new-assignment)
;; 将带有版本号的分配信息versions存入supervisor缓存:assignment-versions中
(
swap! (
:assignment-versions
supervisor)
versions)
;; 重新设置supervisor缓存的:curr-assignment值为new-assignment,即保存当前storm集群上最新分配信息
(
reset! (
:curr-assignment
supervisor)
new-assignment)
;; remove any downloaded code that's no longer assigned or active
;; important that this happens after setting the local assignment so that
;; synchronize-supervisor doesn't try to launch workers for which the
;; resources don't exist
;; 如果当前supervisor服务器的操作系统是"Windows_NT"系统,那么执行shutdown-disallowed-workers函数,关闭状态为:disallowed的worker
(
if
on-windows? (
shutdown-disallowed-workers
supervisor))
;; 遍历downloaded-storm-ids集合,该集合内存放了已经下载了jar包等信息的topology的id
(
doseq
[
storm-id
downloaded-storm-ids
]
;; 如果storm-id不在assigned-storm-ids集合内,则递归删除"{storm.local.dir}/supervisor/stormdist/{storm-id}"目录。assigned-storm-ids表示当前需要在该supervisor上运行的topology的id
(
when-not (
assigned-storm-ids
storm-id)
(
log-message
"Removing code for storm id "
storm-id)
(
try
(
rmr (
supervisor-stormdist-root
conf
storm-id))
(
catch
Exception
e (
log-message (
.getMessage
e))))
))
;; 将sync-processes函数添加到processes-event-manager事件管理器中,这样就可以在一个单独线程内执行sync-processes函数。因为sync-processes函数比较耗时,所以需要在一个新的线程内执行
(
.add
processes-event-manager
sync-processes)
)))
assignments-snapshot函数定义如下:
assignments-snapshot函数
;; assignments-snapshot函数从zookeeper的子节点"/assignments"获取分配信息,并将回调函数添加到子节点"/assignments"上,assignment-versions绑定该supervisor本地缓存的带有版本号的分配信息
(
defn-
assignments-snapshot
[
storm-cluster-state
callback
assignment-versions
]
;; storm-ids绑定已分配的topology-id的集合,获取/assignments的子节点列表,如果callback不为空,将其赋值给assignments-callback,并对/assignments添加"节点观察",这样supervisor就能感知集群是否有新的assignment或者有assignment被删除
(
let
[
storm-ids (
.assignments
storm-cluster-state
callback
)]
;; new-assignments绑定最新分配信息
(
let
[
new-assignments
(
->>
;; sid绑定topology-id
(
dofor
[
sid
storm-ids
]
;; recorded-version绑定该supervisor上缓存的该sid的分配信息版本号
(
let
[
recorded-version (
:version (
get
assignment-versions
sid
))]
;; assignment-version绑定zookeeper上"/assignments/{sid}"节点数据及其版本号,并注册回调函数
(
if-let
[
assignment-version (
.assignment-version
storm-cluster-state
sid
callback
)]
;; 如果缓存的分配版本号和zookeeper上获取的分配版本号相等,则返回sid->缓存的分配信息的map,否则从zookeeper的"/assignments/{sid}"节点重新获取带有版本号的分配信息,并注册回调函数,这样supervisor就能感知某个已存在的assignment是否被重新分配
(
if (
=
assignment-version
recorded-version)
{
sid (
get
assignment-versions
sid
)}
{
sid (
.assignment-info-with-version
storm-cluster-state
sid
callback
)})
;; 如果从zookeeper上获取分配信息失败,值为{sid nil}
{
sid
nil
})))
;; 将dofor结果进行合并,形如:{sid_1 {:data data_1 :version version_1}, sid_2 {:data data_2 :version version_2},......sid_n {:data data_n :version version_n} }
(
apply
merge)
;; 保留值不空的键值对
(
filter-val
not-nil?
))]
;; 返回的map形如:{:assignments {sid_1 data_1, sid_2 data_2, ...... , sid_n data_n}, :versions {sid_1 {:data data_1 :version version_1}, sid_2 {:data data_2 :version version_2},......sid_n {:data data_n :version version_n} } }
;; data_x是一个AssignmentInfo对象,AssignmentInfo对象包含对应的nimbus上的代码目录,所有task的启动时间,每个task与机器、端口的映射
{
:assignments (
into
{} (
for
[[
k
v
]
new-assignments
]
[
k (
:data
v
)]))
:versions
new-assignments
})))
read-assignments函数定义如下:
read-assignments函数
(
defn-
read-assignments
"Returns map from port to struct containing :storm-id and :executors"
;; assignments-snapshot绑定topology-id->分配信息AssignmentInfo对象的map,assignment-id绑定supervisor-id
[
assignments-snapshot
assignment-id
]
;; 遍历read-my-executors函数返回结果,检查是否存在多个topology分配到同一个端口,如果存在则抛出异常。检查的方式特别巧妙,通过对返回结果调用merge-with函数,如果返回结果中存在相同的port,那么就会调用
;; 匿名函数(fn [& ignored] ......),这样就会抛出异常
(
->> (
dofor
[
sid (
keys
assignments-snapshot
)] (
read-my-executors
assignments-snapshot
sid
assignment-id))
(
apply merge-with (
fn
[
&
ignored
] (
throw-runtime
"Should not have multiple topologies assigned to one port")))))
read-my-executor函数定义如下:
read-my-executor函数
;; assignments-snapshot绑定topology-id->分配信息AssignmentInfo对象的map,assignment-id绑定supervisor-id,storm-id为topoloy-id
(
defn-
read-my-executors
[
assignments-snapshot
storm-id
assignment-id
]
(
let
[
assignment (
get
assignments-snapshot
storm-id)
;; my-executors绑定分配给该supervisor的executor信息,即executor->node+port的map
my-executors (
filter (
fn
[[
_
[
node
_
]]] (
= node
assignment-id))
(
:executor->node+port
assignment))
;; port-executors绑定port->executor-id集合的map,merge-with函数的作用就是对key相同的value调用concat函数
port-executors (
apply
merge-with
concat
(
for
[[
executor
[
_
port
]]
my-executors
]
{
port
[
executor
]}
))]
;; 返回port->LocalAssignment对象的map,LocalAssignment包含两个属性:topology-id和executor-id集合
(
into
{} (
for
[[
port
executors
]
port-executors
]
;; need to cast to int b/c it might be a long (due to how yaml parses things)
;; doall is to avoid serialization/deserialization problems with lazy seqs
[(
Integer.
port) (
LocalAssignment.
storm-id (
doall
executors
))]
))))
download-storm-code函数定义如下:
download-storm-code函数
(
defmulti
download-storm-code
cluster-mode)
download-storm-code
函数是一个
"多重函数"
,根据
cluster-mode
函数的返回值决定调用哪个函数,
cluster-mode
函数可能返回关键字
:distributed
和
:local
,如果返回
:distributed
,那么会调用下面这个函数。
(
defmethod
download-storm-code
;; master-code-dir绑定storm-id的代码jar包在nimbus服务器上的路径
:distributed
[
conf
storm-id
master-code-dir
]
;; Downloading to permanent location is atomic
;; tmproot绑定supervisor本地路径"{storm.local.dir}/supervisor/tmp/{uuid}",临时存放从nimbus上下载的代码jar包
(
let
[
tmproot (
str (
supervisor-tmp-dir
conf)
file-path-separator (
uuid))
;; stormroot绑定该storm-id的代码jar包在supervisor上的路径"{storm.local.dir}/supervisor/stormdist/{storm-id}"
stormroot (
supervisor-stormdist-root
conf
storm-id
)]
;; 创建临时目录tmproot
(
FileUtils/forceMkdir (
File.
tmproot))
;; 将nimbus服务器上的"{storm.local.dir}/nimbus/stormdist/{storm-id}/stormjar.jar"文件下载到supervisor服务器的tmproot目录中,stormjar.jar包含这个topology所有代码
(
Utils/downloadFromMaster
conf (
master-stormjar-path
master-code-dir) (
supervisor-stormjar-path
tmproot))
;; 将nimbus服务器上的"{storm.local.dir}/nimbus/stormdist/{storm-id}/stormcode.ser"文件下载到supervisor服务器的tmproot目录中,stormcode.ser是这个topology对象的序列化
(
Utils/downloadFromMaster
conf (
master-stormcode-path
master-code-dir) (
supervisor-stormcode-path
tmproot))
;; 将nimbus服务器上的"{storm.local.dir}/nimbus/stormdist/{storm-id}/stormconf.ser"文件下载到supervisor服务器的tmproot目录中,stormconf.ser包含运行这个topology的配置
(
Utils/downloadFromMaster
conf (
master-stormconf-path
master-code-dir) (
supervisor-stormconf-path
tmproot))
;; RESOURCES-SUBDIR值为字符串"resources",extract-dir-from-jar函数主要作用就是将jar包解压,然后将jar包中路径以"resources"开头的文件解压到"{tmproot}/resources/......"目录
(
extract-dir-from-jar (
supervisor-stormjar-path
tmproot)
RESOURCES-SUBDIR
tmproot)
;; 将临时目录tmproot中的文件剪切到stormroot目录中,这样"{storm.local.dir}/nimbus/stormdist/{storm-id}/"目录中将包括resources目录,stormjar.jar文件,stormcode.ser文件,stormconf.ser文件
(
FileUtils/moveDirectory (
File.
tmproot) (
File.
stormroot))
))
extract-dir-from-jar函数定义如下:
extract-dir-from-jar函数
;; jarpath标识jar路径,dir标识"resources",destdir标识"{tmproot}"路径
(
defn
extract-dir-from-jar
[
jarpath
dir
destdir
]
(
try-cause
;; 使用类ZipFile来解压jar包,jarpath绑定ZipFile对象
(
with-open
[
jarpath (
ZipFile.
jarpath
)]
;; 调用entries方法,返回一个枚举对象,然后调用enumeration-seq函数获取文件的ZIP条目对象
(
let
[
entries (
enumeration-seq (
.entries
jarpath
))]
;; 遍历entries中路径以"resources"开头的文件
(
doseq
[
file (
filter (
fn
[
entry
](
and (
not (
.isDirectory
entry)) (
.startsWith (
.getName
entry)
dir)))
entries
)]
;; 在"tmproot"目录中创建文件的完整父路径
(
.mkdirs (
.getParentFile (
File.
destdir (
.getName
file))))
;; 将文件复制到"{tmproot}/{在压缩文件中的路径}"
(
with-open
[
out (
FileOutputStream. (
File.
destdir (
.getName
file
)))]
(
io/copy (
.getInputStream
jarpath
file)
out)))))
(
catch
IOException
e
(
log-message
"Could not extract "
dir
" from "
jarpath))))
以上就是storm启动supervisor的完整流程,启动supervisor的工作主要是在mk-supervisor函数中进行的,所以阅读该部分源码时,要首先从该函数入手,然后依次分析在该函数中所调用的其他函数,根据函数的控制流程分析每个函数。