SVD分解
SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。
基础知识
1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数
2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵
3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵
4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立
则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。
5. 特征值和矩阵的关系:考虑以下矩阵
该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量
假设VT=(2,4,6) 计算S x VT
有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。
矩阵分解
1. 方阵的分解
1) 设S是M x M方阵,则存在以下矩阵分解
其中U 的列为S的特征向量,为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:
2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解
其中Q的列为矩阵S的单位正交特征向量,仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。
2. 奇异值分解
上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。
假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:
其中CCT和CTC的特征值相同,为
Σ为M X N,其中,其余位置数值为0,的值按大小降序排列。以下是Σ的完整数学定义:
σi称为矩阵C的奇异值。
用C乘以其转置矩阵CT得:
上式正是在上节中讨论过的对称矩阵的分解。
奇异值分解的图形表示:
从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵
3. 低阶近似
LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。
给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为
当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。
SVD可以被用与求低阶近似问题,步骤如下:
1. 给定一个矩阵C,对其奇异值分解:
2. 构造,它是将的第k+1行至M行设为零,也就是把的最小的r-k个(the r-k smallest)奇异值设为零。
3. 计算Ck:
回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。
我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。
【Latent semantic analysis】
LSA最初是用在语义检索上,为了解决一词多义和一义多词的问题:
1.一词多义: 美女和PPMM表示相同的含义,但是单纯依靠检索词“美女”来检索文档,很可能丧失掉那些包含“PPMM”的文档。
2.一义多词:如果输入检索词是多个检索词组成的一个小document,例如“清澈 孩子”,那我们就知道这段文字主要想表达concept是和道德相关的,不应该将“春天到了,小河多么的清澈”这样的文本包含在内。
为了能够解决这个问题,需要将词语(term)中的concept提取出来,建立一个词语和概念的关联关系(t-c relationship),这样一个文档就能表示成为概念的向量。这样输入一段检索词之后,就可以先将检索词转换为概念,再通过概念去匹配文档。
在实际实现这个思想时,LSA使用了SVD分解的数学手段。我们可以将document and term表示成为矩阵的形式。用x表示term-document matrix,通过SVD分解X可以表示为
x=T*S*D 。
S为对角矩阵,对角元素表示对应概念的有效程度。其实在实际生活当中概念就是具体事物的抽象,被人们所接受和使用的概念都是能够很有效概念。LSA算法也和实际生活中一样,需要提出掉有效程度低的概念,保留有效程度高的概念。
T为正交矩阵,行向量表示term,列向量表示概念
D为正交矩阵,行向量表示概念,列向量表示document
【PLSA】
PLSA和LSA基础思想是相同的,都是希望能从term中抽象出概念,但是具体实现的方法不相同。PLSA使用了概率模型,并且使用EM算法来估计P(t|c)和P(c|d)矩阵,详细算法可参考下面列举的相关文献。
相关文献:
一篇介绍LSA非常好的note
Latent semantic analysis note by zhouli
一篇介绍PLSA的note by hong liangjie
Notes on Probabilistic Latent Semantic Analysis (PLSA)
PLSA wiki 上面有PLSA的creator Hofmann的原始文章