如果读者留意 OpenCV 2.3 之后的版本,那么会发现 cv::ogl namespace,ogl 自然是 OpenGL了。一个三维计算机图形库为何出现在计算机视觉中,传统的 CV 开发者是否需要学习它,这些问题待我一一来回答。
在 2.3 之前 OpenCV 的渲染部分都是由 CPU 来实现的,不论是画线还是把图片显示到屏幕上。这有两个问题,速度慢,同时没法画三维物体。引入 OpenGL 是为了借助 显卡的力量,显卡比 CPU 更擅长渲染,同时显卡和 CPU 可以同时干活。比方说,CPU 在获取摄像头画面然后检测人脸时,显卡在渲染三维的人脸网格模型和高精度抗锯齿的二维界面。
另外,随着民用深度传感器的普及,cv::VideoCapture 第一时间增加了对 Kinect、华硕 Xtion、Intel Perceptual Computing SDK 等的支持。传统的视觉计算中,深度图只能当做单通道的灰度图进行处理。想实现隔空的多点触摸是绰绰有余,但是如果想实现三维重建(比如 Kinect Fushion)那么我们必须将算法升级到三维空间。相应的,三维空间的算法也需要三维的 API 进行渲染,也就是 OpenGL。
想开启该功能,需要在配置 CMake 时选上 WITH_OPENGL=ON,然后重新编译完整的 OpenCV 库。我简要介绍下几个组件:
前面这两个类都只是保存数据,要把数据画出来,还要用到 ogl::render 函数。
void ogl::render(const Texture2D& tex, Rect_<double> wndRect=Rect_<double>(0.0, 0.0, 1.0, 1.0), Rect_<double> texRect=Rect_<double>(0.0, 0.0, 1.0, 1.0))
It depends.
如果你开发的是命令行程序并不显示任何图像,或者显示的图片很简单,那么不需要转换到 cv::ogl 下。
如果你的应用耗费了大量时间在图片的显示上,或是希望拥有高质量的界面系统,那么你可以借助 cv::ogl::Texture2D 加速图像的渲染。
如果你开发的是增强现实应用,你肯定已经拥有了自己的三维渲染模块,可以考虑与 cv::ogl::Buffer 整合。
如果你已经在使用 CUDA 模块,对于渲染的时候数据需要回传到 CPU 表示多此一举,那么你可以使用 CUDA 与 OpenGL 的协同功能去除多余的数据传输。
另一方面,如果你不是 OpenCV 的用户但是你正在开发虚拟现实应用,你可以考虑将视觉计算引入到你的系统中,实现类似 HoloLens 的设备。
由于显卡能力的增强以及硬件公司的支持,OpenCV 逐渐展露出新的形态,大量的视觉计算位于显卡上。
这意味着除了文件读写(highgui 模块)外,视觉应用可以逐渐脱离 CPU。
---------------------------------
转载请保留作者名、注明源自微信公众号“黑客与画家”(HackerAndPainter)。可扫描下方二维码关注。