http://www.lydsy.com/JudgeOnline/problem.php?id=1084
给定一个矩阵选取其中不相交的t个矩阵使其权值和最大
m=1或2
m=1时
dp[i,j]=max{dp[i−1,j],max{dp[k,j−1]+sum[i]−sum[k]}} (0<=k<i)
m=2时
dp[i,j,k]=max{dp[i−1,j,k],dp[i,j−1,k]}
dp[i,j,k]=max{dp[i,j,k],dp[l,j,k−1]+sum1[i]−sum1[l]} (0<=l<i)
dp[i,j,k]=max{dp[i,j,k],dp[i,l,k−1]+sum2[j]−sum2[l]} (0<=l<j)
dp[i,j,k]=max{dp[i,j,k],dp[l,l,k−1]+sum1[i]−sum1[l]+sum2[i]−sum2[l]} (i=j且0<=l<i)
var
sum1,sum2:array[0..200]of longint;
dp1:array[0..200,0..200]of longint;
dp2:array[0..200,0..200,0..200]of longint;
i,j,k,l:longint;
n,m,t,a,b:longint;
function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end;
begin
readln(n,m,t);
if m=1 then begin
sum1[0]:=0;
for i:=1 to n do
begin
readln(a);
sum1[i]:=sum1[i-1]+a;
end;
for i:=1 to n do
for j:=1 to t do
begin
dp1[i,j]:=dp1[i-1,j];
for k:=0 to i-1 do
dp1[i,j]:=max(dp1[i,j],dp1[k,j-1]+sum1[i]-sum1[k]);
end;
writeln(dp1[n,t]);
end
else begin
sum1[0]:=0; sum2[0]:=0;
for i:=1 to n do
begin
readln(a,b);
sum1[i]:=sum1[i-1]+a; sum2[i]:=sum2[i-1]+b;
end;
for i:=1 to n do
for j:=1 to n do
for k:=1 to t do
begin
dp2[i,j,k]:=max(dp2[i-1,j,k],dp2[i,j-1,k]);
for l:=0 to i-1 do
dp2[i,j,k]:=max(dp2[i,j,k],dp2[l,j,k-1]+sum1[i]-sum1[l]);
for l:=0 to j-1 do
dp2[i,j,k]:=max(dp2[i,j,k],dp2[i,l,k-1]+sum2[j]-sum2[l]);
if i=j then
for l:=0 to i-1 do
dp2[i,j,k]:=max(dp2[i,j,k],dp2[l,l,k-1]+sum1[i]-sum1[l]+sum2[i]-sum2[l]);
end;
writeln(dp2[n,n,t]);
end;
end.