数据结构之-二叉查找树的实现(C语言版)

修正:前驱与后继操作有误,修正

二叉查找树是满足如下性质的二叉树:
  • 设x为二叉树中的一个结点,如果y是x的左子树中的一个结点,则key[y]<=key[x]
  • 如果y是x的右子树,则key[x]<=key[y]

二叉查找树的数据结构和操作定义如下:
/*file:biTree.h*/
#ifndef CHIYX_BITREE
#define CHIYX_BITREE
#ifndef NULL
#define NULL 0
#endif
typedef int DataType;
//二叉树的节点结构
typedef struct BiTreeNode {
	DataType data;
	struct BiTreeNode *parent;
	struct BiTreeNode *left;
	struct BiTreeNode *right;
}BiTreeNode, *BiTree;

//查找:返回第一个等于data域等于key的节点,不存在返回NULL
BiTreeNode *search(BiTree *biTree, DataType key);
//返回二叉树的最小节点,空树返回NULL
BiTreeNode *minImum(BiTree *biTree);
//返回二叉树的最大节点,空树返回NULL
BiTreeNode *maxImum(BiTree *biTree);
//返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL
BiTreeNode *successor(BiTreeNode *x);
//返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL
BiTreeNode *predecessor(BiTreeNode *x);
//将值data插入到二叉树中(生成一个值为data的节点)
void insertNode(BiTree *biTree, DataType data);
//删除一个值为data的节点
void deleteNode(BiTree *biTree, DataType data);
//中序遍历二叉树
void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node));
#endif

它的实现如下:
/*file:biTree.c*/
#include <stdlib.h>
#include "biTree.h"

//查找:返回第一个等于data域等于key的节点,不存在返回NULL
BiTreeNode *search(BiTree *biTree, DataType key) {
	BiTreeNode *curNode = *biTree;
	while (curNode != NULL && curNode->data != key) {
		if (key < curNode->data) {
			curNode = curNode->left;
		} else {
			curNode = curNode->right;
		}
	}
	return curNode;
}
//返回二叉树的最小节点,空树返回NULL
BiTreeNode *minImum(BiTree *biTree) {
	BiTreeNode *curNode = *biTree;
	while (curNode != NULL && curNode->left != NULL) {
		curNode = curNode->left;
	}
	return curNode;
}
//返回二叉树的最大节点,空树返回NULL
BiTreeNode *maxImum(BiTree *biTree) {
	BiTreeNode *curNode = *biTree;
	while (curNode != NULL && curNode->right != NULL) {
		curNode = curNode->right;
	}
	return curNode;
}

//返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL
BiTreeNode *successor(BiTreeNode *x) {
         if (x == NULL) return NULL;
	//存在右子树,则后继节点为其右子树中最小的节点
	if (x != NULL && x->right != NULL) {
		return minImum(&(x->right));
	}
	while (x->parent != NULL && x->parent->right == x) {
		x = x->parent;
	}
	return x->parent; //错误版本为 x, 此处应该返回父结点
}
//返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL
BiTreeNode *predecessor(BiTreeNode *x) {
         if (x == NULL) return NULL;
	//存在左子树,则后继节点为其左子树中最大的节点
	if (x != NULL && x->left != NULL) {
		return maxImum(&(x->left));
	}
	while (x->parent != NULL && x->parent->left == x) {
		x = x->parent;
	}
	return x->parent; //错误版本为 x, 此处应该返回父结点

}

void insertNode(BiTree *biTree, DataType data) {
	//创建节点
	BiTreeNode *targetNode;

	targetNode = (BiTreeNode *)malloc(sizeof(BiTreeNode));
	//没有足够内存
	if (targetNode == NULL) return;
	targetNode->data = data;
	targetNode->parent = NULL;
	targetNode->left = NULL;
	targetNode->right = NULL;

	BiTreeNode *p, *y; 
	p = *biTree;
	y = NULL;
	while (p != NULL ) {
		y = p;
		if (targetNode->data < p->data) {
			p = p->left;
		} else {
			p = p->right;
		}
	}
	//空树,将新节点置为树根
	if (y == NULL) {
		*biTree = targetNode;
	} else {
		if (targetNode->data < y->data) {
			y->left = targetNode;
		} else {
			y->right = targetNode;
		}
	}
	targetNode->parent = y;
}
//删除一个值为data的节点
void deleteNode(BiTree *biTree, DataType data) {
	//查找待删除的节点
	BiTreeNode *targetNode, *x, *y;

	targetNode = search(biTree, data);
	if (targetNode == NULL) return;
	//找出真正的删除节点,如果目标节点最多只有一个子树,则其为真正删除的节点
	//否则其后继节点(最多只有一个子树,想想为什么)为真正删除的节点,然后将后继节点的值赋给目标节点
	if (targetNode->left == NULL || targetNode->right == NULL) {
		y = targetNode;
	} else {
		y = successor(targetNode);
	}

	if (y->left != NULL) {
		x = y->left;
	} else {
		x = y->right;
	}

	if (x != NULL) {
		x->parent = y->parent;
	}

	//如果y是根节点, 则根节点变为x
	if (y->parent == NULL) {
		*biTree = x;
	} else {
		if (y->parent->right == y) {
			y->parent->right = x;
		} else {
			y->parent->left = x;
		}
	}

	if (y != targetNode) {
		targetNode->data = y->data;
	} 
	//释放y占有的空间
	free(y);
}
//中序遍历二叉树
void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node)) {
	BiTreeNode *curNode;

	curNode = *biTree;
	if (curNode != NULL) {
		//遍历左子树
		inorderTraversal(&(curNode->left), visitor);
		//访问节点
		visitor(curNode);
		//遍历右子树
		inorderTraversal(&(curNode->right), visitor);
	}
}

测试代码如下:
#include <stdio.h>
#include <stdlib.h>
#include "biTree.h"
#define N  10
void printNode(BiTreeNode *node);

int main(int argc, char *argv[]) {
	BiTreeNode *root;
	int i;

	root = NULL;
	int data[N] = {10, 23, 11, 98, 111, 87, 34, 11, 33, 8};
	for (i = 0; i < N; i++) {
		insertNode(&root, data[i]);
	}
	printf("before delete:\n");
	inorderTraversal(&root, printNode);
	printf("\n");
	deleteNode(&root, 11);
	deleteNode(&root, 8);
	printf("after delete:\n");
	inorderTraversal(&root, printNode);
	printf("\n");
	exit(0);
}
void printNode(BiTreeNode *node) {
	printf("%d\t", node->data);
}

运行结果:
before delete:
8       10      11      11      23      33      34      87      98      111

after delete:
10      11      23      33      34      87      98      111

你可能感兴趣的:(数据结构,c,二叉树,二叉查找树)