TLD(Tracking-Learning-Detection)算法学习与源码解析(四)之LKTracker源码分析

         本序列文章的目的是总结一下这段时间所学到的,主要分为以下几部分,本章是第四部分。

算法概述

2 runtld.cpp源码解析

3 tld.cpp源码解析

4 LKTracker(重点)

5 FerNNClassifier.cpp源码解析(重点)

6 tld_utils.cpp源码解析


LKTracker.cpp实现的就是跟踪模块了,其中有一个金字塔LK光流法跟踪的算法是直接用了库函数的,这里不展开讲。

跟踪器的作用:

在一个patch跟踪一些points在另一个pacth的位置,还要根据相似度和误差把一些点过滤掉,

就是只保留那些跟踪效果好的点。


#include <LKTracker.h>
using namespace cv;

LKTracker::LKTracker(){
  term_criteria = TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 20, 0.03);
  window_size = Size(4,4);
  level = 5;
  lambda = 0.5;
}

/**
 *在一个patch跟踪一些points在另一个pacth的位置
 *还要根据相似度和误差把一些点过滤掉
 */
bool LKTracker::trackf2f(const Mat& img1, const Mat& img2,vector<Point2f> &points1, vector<cv::Point2f> &points2){
  //TODO!:implement c function cvCalcOpticalFlowPyrLK() or Faster tracking function
  //Forward-Backward tracking
  calcOpticalFlowPyrLK( img1,img2, points1, points2, status,similarity, window_size, level, term_criteria, lambda, 0);
  calcOpticalFlowPyrLK( img2,img1, points2, pointsFB, FB_status,FB_error, window_size, level, term_criteria, lambda, 0);
  //Compute the real FB-error
  for( int i= 0; i<points1.size(); ++i ){
        FB_error[i] = norm(pointsFB[i]-points1[i]);
  }
  //Filter out points with FB_error[i] > median(FB_error) && points with sim_error[i] > median(sim_error)
  normCrossCorrelation(img1,img2,points1,points2);
  return filterPts(points1,points2);
}
/**
 * 一个点取周围10*10的小patch
 * 用归一化相关系数的算法把两个patch的相似度算出来,作为两个点的相关性。
 */
void LKTracker::normCrossCorrelation(const Mat& img1,const Mat& img2, vector<Point2f>& points1, vector<Point2f>& points2) {
        Mat rec0(10,10,CV_8U);
        Mat rec1(10,10,CV_8U);
        Mat res(1,1,CV_32F);

        for (int i = 0; i < points1.size(); i++) {
                if (status[i] == 1) {
                        getRectSubPix( img1, Size(10,10), points1[i],rec0 );
                        getRectSubPix( img2, Size(10,10), points2[i],rec1);
                        matchTemplate( rec0,rec1, res, CV_TM_CCOEFF_NORMED);
                        similarity[i] = ((float *)(res.data))[0];

                } else {
                        similarity[i] = 0.0;
                }
        }
        rec0.release();
        rec1.release();
        res.release();
}

/**
 *根据误差和相似度,把一些不符合条件的点给去掉
 */
bool LKTracker::filterPts(vector<Point2f>& points1,vector<Point2f>& points2){
  //Get Error Medians
  simmed = median(similarity);
  size_t i, k;
  for( i=k = 0; i<points2.size(); ++i ){
        if( !status[i])
          continue;
        if(similarity[i]> simmed){
          points1[k] = points1[i];
          points2[k] = points2[i];
          FB_error[k] = FB_error[i];
          k++;
        }
    }
  if (k==0)
    return false;
  points1.resize(k);
  points2.resize(k);
  FB_error.resize(k);

  fbmed = median(FB_error);
  for( i=k = 0; i<points2.size(); ++i ){
      if( !status[i])
        continue;
      if(FB_error[i] <= fbmed){
        points1[k] = points1[i];
        points2[k] = points2[i];
        k++;
      }
  }
  points1.resize(k);
  points2.resize(k);
  if (k>0)
    return true;
  else
    return false;
}




/*
 * old OpenCV style
void LKTracker::init(Mat img0, vector<Point2f> &points){
  //Preallocate
  //pyr1 = cvCreateImage(Size(img1.width+8,img1.height/3),IPL_DEPTH_32F,1);
  //pyr2 = cvCreateImage(Size(img1.width+8,img1.height/3),IPL_DEPTH_32F,1);
  //const int NUM_PTS = points.size();
  //status = new char[NUM_PTS];
  //track_error = new float[NUM_PTS];
  //FB_error = new float[NUM_PTS];
}


void LKTracker::trackf2f(..){
  cvCalcOpticalFlowPyrLK( &img1, &img2, pyr1, pyr1, points1, points2, points1.size(), window_size, level, status, track_error, term_criteria, CV_LKFLOW_INITIAL_GUESSES);
  cvCalcOpticalFlowPyrLK( &img2, &img1, pyr2, pyr1, points2, pointsFB, points2.size(),window_size, level, 0, 0, term_criteria, CV_LKFLOW_INITIAL_GUESSES | CV_LKFLOW_PYR_A_READY | CV_LKFLOW_PYR_B_READY );
}
*/


注:

原作者是用matlab实现的,我分析的源码是其他大神用c++和opencv实现的,源码可以从

https://github.com/arthurv/OpenTLD或者https://github.com/alantrrs/OpenTLD下载

本序列参考了zouxy09同学的序列文章,在此表示感谢

http://blog.csdn.net/zouxy09/article/details/7893011


你可能感兴趣的:(机器学习,tld,opencv)