本文转自:http://www.cnblogs.com/we-hjb/archive/2008/10/12/1309596.html
通过前两篇文章的介绍,我们已经知道NBOOT用来引导EBOOT,继而EBOOT加载并引导WinCE操作系统(NK)。那么,WinCE6.0的启动过程又是怎样的呢?本文基于S3C2410的平台做一个详细的分析。需要说明的是,WinCE6.0的整个启动过程对于同一类型的MCU来说大同小异,如S3C2410和PXA270同属ARM平台的MCU,所以他们的启动过程是类似的,可以说唯一的不同就在OAL处,而WinCE操作系统的启动正是从OAL开始的。
OAL(OEM Adaptation Layer)即OEM适配层,它的主要作用是在移植WinCE到新的硬件平台时减少操作系统的修改,通俗的说就是为WinCE操作系统抹平MCU的差异,使其能很方便的在不同MCU上运行。所以,OAL包括了和系统硬件通讯的最底层代码。内核则通过OAL跟硬件进行交互。逻辑上,OAL是介于CE内核和设备硬件之间的一个代码层,是一个抽象的概念。物理上,OAL和其他一些库一起链接成可执行文件,在WinCE6.0中对应的文件是OAL.exe,这是OAL的客观存在。WinCE6.0中的OAL跟先前的OAL比,是有一些变化的,它从内核中分离出来成为OAL.exe,而内核则变成了Kernel.dll。这样做的好处是可以单独升级OAL。但整体的OAL结构并没有改变,OEM函数保持一致,OAL和Kernel的接口由共享结构NKGLOBAL实现。这一部分的具体内容下一篇再做介绍。下图所示为WinCE6.0的OAL设计。
在移植WinCE到新的硬件平台时,创建OAL是最复杂的任务之一。一般来说,最简单的方法是拷贝一个跟新的硬件平台类似的且成熟的OAL,然后根据硬件的不同进行修改,使其满足目标硬件的特定要求。这里不展开说明,回头再单独整理。
从EBOOT到OAL.exe的跳转是从OEMLaunch()开始的,函数OEMLaunch()中调用Launch(dwPhysLaunchAddr),它的实现代码如下:
LEAF_ENTRY Launch ldr r2, = PhysicalStart ldr r3, = (VIR_RAM_START - PHY_RAM_START) sub r2, r2, r3 mov r1, #0x0070 ; Disable MMU mcr p15, 0, r1, c1, c0, 0 nop mov pc, r2 ; Jump to PStart nop ; MMU & caches now disabled. PhysicalStart mov r2, #0 mcr p15, 0, r2, c8, c7, 0 ; Flush the TLB mov pc, r0 ; Jump to program we are launching.
函数Launch()的参数为物理地址,因为在跳转之前已将MMU关闭。该地址可通过VIEWBIN来查看,如下图所示:
如何确定这个地址对应的是NK.bin中的哪一个文件呢,先前说是OAL.exe,证据何在。在PB6.0中增加了浏览NK.bin的功能,我们可以利用此功能查看NK.bin的详细情况,如下图所示:
从上图中可以看出0x80205394处对应的是NK.exe,而这里的NK.exe即为OAL.exe。
至此,我们已经知道EBOOT是如何跳转到OAL.exe中的了。接下来继续看OAL.exe的执行过程。
OAL的启动代码如下:
LEAF_ENTRY StartUp ; Compute the OEMAddressTable's physical address and ; load it into r0. KernelStart expects r0 to contain ; the physical address of this table. The MMU isn't ; turned on until well into KernelStart. add r0, pc, #g_oalAddressTable - (. + 8) bl KernelStart
OAL的启动代码和EBOOT的启动代码经常复用,但为了代码的简洁,最好还是分开实现,而且在EBOOT中如果已经初始化了相关硬件,那么OAL的启动代码就可以省去那部分工作,可以很简练,如上面的代码所示。
可以看出,OAL的启动代码又调用了函数KernelStart(),而这个函数是在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\LDR\ARM\armstart.s中实现的,代码如下:
LEAF_ENTRY KernelStart mov r11, r0 ; (r11) = &OEMAddressTable (save pointer) ; figure out the virtual address of OEMAddressTable mov r1, r11 ; (r1) = &OEMAddressTable (2nd argument to VaFromPa) bl VaFromPa mov r6, r0 ; (r6) = VA of OEMAddressTable ; convert base of PTs to Physical address ldr r4, =PTs ; (r4) = virtual address of FirstPT mov r0, r4 ; (r0) = virtual address of FirstPT mov r1, r11 ; (r1) = &OEMAddressTable (2nd argument to PaFromVa) bl PaFromVa mov r10, r0 ; (r10) = ptr to FirstPT (physical) ; Zero out page tables & kernel data page mov r0, #0 ; (r0-r3) = 0's to store mov r1, #0 mov r2, #0 mov r3, #0 mov r4, r10 ; (r4) = first address to clear add r5, r10, #KDEnd-PTs ; (r5) = last address + 1 18 stmia r4!, {r0-r3} stmia r4!, {r0-r3} cmp r4, r5 blo %B18 ; read the architecture information bl GetCpuId mov r5, r0 LSR #16 ; r5 >>= 16 and r5, r5, #0x0000000f ; r5 &= 0x0000000f == architecture id ; Setup 2nd level page table to map the high memory area which contains the ; first level page table, 2nd level page tables, kernel data page, etc. ; (r5) = architecture id add r4, r10, #HighPT-PTs ; (r4) = ptr to high page table cmp r5, #ARMv6 ; v6 or later? ; ARMV6_MMU orrge r0, r10, #PTL2_KRW + PTL2_SMALL_PAGE + ARMV6_MMU_PTL2_SMALL_XN ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable ; PRE ARMV6_MMU orrlt r0, r10, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6) ; Need to replicate AP bits into all 4 fields orrlt r0, r0, #PTL2_SMALL_PAGE + PREARMV6_MMU_PTL2_SMALL_XN ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable str r0, [r4, #0xD0*4] ; store the entry into 4 slots to map 16K of primary page table add r0, r0, #0x1000 ; step on the physical address str r0, [r4, #0xD1*4] add r0, r0, #0x1000 ; step on the physical address str r0, [r4, #0xD2*4] add r0, r0, #0x1000 ; step on the physical address str r0, [r4, #0xD3*4] add r8, r10, #ExceptionVectors-PTs ; (r8) = ptr to vector page orr r0, r8, #PTL2_SMALL_PAGE ; construct the PTE (C=B=0) ;; The exception stacks and the vectors are mapped as a single kr/w page. ;; Any alternative will use more physical memory. ;; Multiple mappings don't provide any real protection: if the vectors were in a r/o page, ;; they could still be corrupted via the kr/w setting required for the stacks. cmp r5, #ARMv6 ; v6 or later? ; ARMV6_MMU orrge r0, r0, #PTL2_KRW ; PRE ARMV6_MMU orrlt r0, r0, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6) ; Need to replicate AP bits into all 4 fields for pre-V6 MMU str r0, [r4, #0xF0*4] ; store entry for exception stacks and vectors ; other 3 entries now unused add r9, r10, #KPage-PTs ; (r9) = ptr to kdata page orr r0, r9, #PTL2_SMALL_PAGE ; (r0)=PTE for 4K (C=B=0) ; ARMV6_MMU (condition codes still set) orrge r0, r0, #PTL2_KRW_URO ; No subpage access control, so we must set this all to kr/w+ur/o ; PRE ARMV6_MMU orrlt r0, r0, #(PTL2_KRW << 0) + (PTL2_KRW << 2) + (PTL2_KRW_URO << 4) ; (r0) = set perms kr/w kr/w kr/w+ur/o r/o str r0, [r4, #0xFC*4] ; store entry for kernel data page orr r0, r4, #PTL1_2Y_TABLE ; (r0) = 1st level PTE for high memory section add r1, r10, #0x4000 str r0, [r1, #-4] ; store PTE in last slot of 1st level table ; Fill in first level page table entries to create "statically mapped" regions ; from the contents of the OEMAddressTable array. ; ; (r5) = architecture id ; (r9) = ptr to KData page ; (r10) = ptr to 1st level page table ; (r11) = ptr to OEMAddressTable array add r10, r10, #0x2000 ; (r10) = ptr to 1st PTE for "unmapped space" mov r0, #PTL1_SECTION orr r0, r0, #PTL1_KRW ; (r0)=PTE for 0: 1MB (C=B=0, kernel r/w) 20 mov r1, r11 ; (r1) = ptr to OEMAddressTable array (physical) 25 ldr r2, [r1], #4 ; (r2) = virtual address to map Bank at ldr r3, [r1], #4 ; (r3) = physical address to map from ldr r4, [r1], #4 ; (r4) = num MB to map cmp r4, #0 ; End of table? beq %F29 ldr r12, =0x1FF00000 and r2, r2, r12 ; VA needs 512MB, 1MB aligned. ldr r12, =0xFFF00000 and r3, r3, r12 ; PA needs 4GB, 1MB aligned. add r2, r10, r2, LSR #18 add r0, r0, r3 ; (r0) = PTE for next physical page 28 str r0, [r2], #4 add r0, r0, #0x00100000 ; (r0) = PTE for next physical page sub r4, r4, #1 ; Decrement number of MB left cmp r4, #0 bne %B28 ; Map next MB bic r0, r0, #0xF0000000 ; Clear Section Base Address Field bic r0, r0, #0x0FF00000 ; Clear Section Base Address Field b %B25 ; Get next element 29 sub r10, r10, #0x2000 ; (r10) = restore address of 1st level page table ; The minimal page mappings are setup. Initialize the MMU and turn it on. ; there are some CPUs with pipeline issues that requires identity mapping before turning on MMU. ; We'll create an identity mapping for the address we'll jump to when turning on MMU on and remove ; the mapping after we turn on MMU and running on Virtual address. ldr r12, =0xFFF00000 ; (r12) = mask for section bits and r1, pc, r12 ; physical address of where we are ; NOTE: we assume that the KernelStart function never spam across 1M boundary. orr r0, r1, #PTL1_SECTION orr r0, r0, #PTL1_KRW ; (r0) = PTE for 1M for current physical address, C=B=0, kernel r/w add r7, r10, r1, LSR #18 ; (r7) = 1st level PT entry for the identity map ldr r8, [r7] ; (r8) = saved content of the 1st-level PT str r0, [r7] ; create the identity map mov r1, #1 mtc15 r1, c3 ; Setup access to domain 0 and clear other mtc15 r10, c2 ; setup translation base (physical of 1st level PT) mov r0, #0 mcr p15, 0, r0, c8, c7, 0 ; Flush the I&D TLBs mfc15 r1, c1 orr r1, r1, #0x007F ; changed to read-mod-write for ARM920 Enable: MMU, Align, DCache, WriteBuffer cmp r5, #ARMv6 ; r5 still set ; ARMV6_MMU orrge r1, r1, #0x3000 ; vector adjust, ICache orrge r1, r1, #1<<23 ; V6-format page tables orrge r1, r1, #ARMV6_U_BIT ; V6-set U bit, let A bit control unalignment support ; PRE ARMV6_MMU orrlt r1, r1, #0x3200 ; vector adjust, ICache, ROM protection ldr r0, VirtualStart cmp r0, #0 ; make sure no stall on "mov pc,r0" below mtc15 r1, c1 ; enable the MMU & Caches mov pc, r0 ; & jump to new virtual address nop ; MMU & caches now enabled. ; ; (r10) = physcial address of 1st level page table ; (r7) = entry in 1st level PT for identity map ; (r8) = saved 1st level PT save at (r7) VStart ldr r2, =FirstPT ; (r2) = VA of 1st level PT sub r7, r7, r10 ; (r7) = offset into 1st-level PT str r8, [r2, r7] ; restore the temporary identity map mcr p15, 0, r0, c8, c7, 0 ; Flush the I&D TLBs ; ; setup stack for each modes: current mode = supervisor mode ; ldr sp, =KStack add r4, sp, #KData-KStack ; (r4) = ptr to KDataStruct ; setup ABORT stack mov r1, #ABORT_MODE:OR:0xC0 msr cpsr_c, r1 ; switch to Abort Mode w/IRQs disabled add sp, r4, #AbortStack-KData ; setup IRQ stack mov r2, #IRQ_MODE:OR:0xC0 msr cpsr_c, r2 ; switch to IRQ Mode w/IRQs disabled add sp, r4, #IntStack-KData ; setup FIQ stack mov r3, #FIQ_MODE:OR:0xC0 msr cpsr_c, r3 ; switch to FIQ Mode w/IRQs disabled add sp, r4, #FIQStack-KData ; setup UNDEF stack mov r3, #UNDEF_MODE:OR:0xC0 msr cpsr_c, r3 ; switch to Undefined Mode w/IRQs disabled mov sp, r4 ; (sp_undef) = &KData ; switch back to Supervisor mode mov r0, #SVC_MODE:OR:0xC0 msr cpsr_c, r0 ; switch to Supervisor Mode w/IRQs disabled ldr sp, =KStack ; continue initialization in C add r0, sp, #KData-KStack ; (r0) = ptr to KDataStruct str r6, [r0, #pAddrMap] ; store VA of OEMAddressTable in KData bl ARMInit ; call C function to perform the rest of initializations ; upon return, (r0) = entry point of kernel.dll mov r12, r0 ldr r0, =KData mov pc, r12 ; jump to entry of kernel.dll从上面的代码可以看出,KernelStart()通过OEMAddressTable初始化了MMU,然后通过调用函数ARMInit()获得kernel.dll的入口点,最后跳转到kernel.dll的入口点处。
为了找到Kernel.dll的入口点,用IDA反汇编kernel.dll文件,可以看到,Kernel.dll的入口点为NKStartup。
NKStartup()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\ mdarm.c中,代码如下: 终于用C语言了\(^o^)/
// // NKStartup - entry point of kernel.dll. // // NK Loader setup only the minimal mappings, which includes ARMHigh area, and the cached static mapping area, // with *EVERYTHING UNCACHED*. Interrupt vectors are not setup either. So, the init sequence reqiures: // (1) pickup data passed from nk loader // (2) Find entry point of oal, exchange globals, find out the cache mode. // (3) fill in the rest of static mapped area (0xa0000000 - 0xbfffffff), PSL faulting address, interrupt vectors, // mod stacks, etc. Then, change the 'cached' static mapping area to use cache, and flush I&D TLB. // (4) continue normal loading of kernel (find KITLdll, call OEMInitDebugSerial, etc.) // void NKStartup (struct KDataStruct * pKData) { PFN_OEMInitGlobals pfnInitGlob; PFN_DllMain pfnKitlEntry; DWORD dwCpuId = GetCpuId (); // (1) pickup arguments from the nk loader g_pKData = pKData; pTOC = (const ROMHDR *) pKData->dwTOCAddr; g_pOEMAddressTable = (PADDRMAP) pKData->pAddrMap; /* get architecture id and update page protection attributes */ pKData->dwArchitectureId = (dwCpuId >> 16) & 0xf; if (pKData->dwArchitectureId >= ARMArchitectureV6) { // v6 or later pKData->dwProtMask = PG_V6_PROTECTION; pKData->dwRead = PG_V6_PROT_READ; pKData->dwWrite = PG_V6_PROT_WRITE; pKData->dwKrwUro = PG_V6_PROT_URO_KRW; pKData->dwKrwUno = PG_V6_PROT_UNO_KRW; } else { // pre-v6 pKData->dwProtMask = PG_V4_PROTECTION; pKData->dwRead = PG_V4_PROT_READ; pKData->dwWrite = PG_V4_PROT_WRITE; pKData->dwKrwUro = PG_V4_PROT_URO_KRW; pKData->dwKrwUno = PG_V4_PROT_UNO_KRW; } // initialize nk globals FirstROM.pTOC = (ROMHDR *) pTOC; FirstROM.pNext = 0; ROMChain = &FirstROM; KInfoTable[KINX_PTOC] = (long)pTOC; KInfoTable[KINX_PAGESIZE] = VM_PAGE_SIZE; g_ppdirNK = (PPAGEDIRECTORY) &ArmHigh->firstPT[0]; pKData->pNk = g_pNKGlobal; // (2) find entry of oal pfnInitGlob = (PFN_OEMInitGlobals) pKData->dwOEMInitGlobalsAddr; // no checking here, if OAL entry point doesn't exist, we can't continue g_pOemGlobal = pfnInitGlob (g_pNKGlobal); g_pOemGlobal->dwMainMemoryEndAddress = pTOC->ulRAMEnd; pKData->pOem = g_pOemGlobal; // setup globals pVMProc = g_pprcNK; pActvProc = g_pprcNK; g_pNKGlobal->pfnWriteDebugString = g_pOemGlobal->pfnWriteDebugString; // (3) setup vectors, UC mappings, mode stacks, etc. ARMSetup (); // // cache is enabled from here on // // (4) common startup code. // try to load KITL if exist if ((pfnKitlEntry = (PFN_DllMain) g_pOemGlobal->pfnKITLGlobalInit) || (pfnKitlEntry = (PFN_DllMain) FindROMDllEntry (pTOC, KITLDLL))) { (* pfnKitlEntry) (NULL, DLL_PROCESS_ATTACH, (DWORD) NKKernelLibIoControl); } #ifdef DEBUG CurMSec = dwPrevReschedTime = (DWORD) -200000; // ~3 minutes before wrap #endif OEMInitDebugSerial (); // debugchk only works after we have something to print to. DEBUGCHK (pKData == (struct KDataStruct *) PUserKData); DEBUGCHK (pKData == &ArmHigh->kdata); OEMWriteDebugString ((LPWSTR)NKSignon); /* Copy interlocked api code into the kpage */ DEBUGCHK(sizeof(struct KDataStruct) <= FIRST_INTERLOCK); DEBUGCHK((InterlockedEnd-InterlockedAPIs)+FIRST_INTERLOCK <= 0x400); memcpy((char *)g_pKData+FIRST_INTERLOCK, InterlockedAPIs, InterlockedEnd-InterlockedAPIs); /* setup processor version information */ CEProcessorType = (dwCpuId >> 4) & 0xFFF; CEProcessorLevel = 4; CEProcessorRevision = (WORD) dwCpuId & 0x0f; CEInstructionSet = PROCESSOR_ARM_V4I_INSTRUCTION; RETAILMSG (1, (L"ProcessorType=%4.4x Revision=%d\r\n", CEProcessorType, CEProcessorRevision)); RETAILMSG (1, (L"OEMAddressTable = %8.8lx\r\n", g_pOEMAddressTable)); OEMInit(); // initialize firmware // flush I&D TLB OEMCacheRangeFlush (NULL, 0, CACHE_SYNC_FLUSH_TLB); KernelFindMemory(); DEBUGMSG (1, (TEXT("NKStartup done, starting up kernel.\r\n"))); KernelStart (); // never returned DEBUGCHK (0); }
NKStartup()的代码就不多解释了,注释已经很详细。该函数的最后又调用了KernelStart ()函数。注意这里的KernelStart()跟上面曾提到的KernelStart()是不一样的。这里KernelStart()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\armtrap.s中,代码和反汇编的对比如下图所示。
可以看到,这里调用了KernelInit()和FirstSchedule()这两个函数。先说FirstSchedule(),它开始了WinCE6.0的第一个调度。它的实现跟KernelStart()在同一文件中,而实现代码跟WinCE5.0中完全一样。接下来,我们继续跟踪KernelInit()函数,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\nkinit.c中,代码如下:
//------------------------------------------------------------------------------ // KernelInit - Kernel initialization before scheduling the 1st thread //------------------------------------------------------------------------------ void KernelInit (void) { #ifdef DEBUG g_pNKGlobal->pfnWriteDebugString (TEXT("Windows CE KernelInit\r\n")); #endif APICallInit (); // setup API set HeapInit (); // setup kernel heap InitMemoryPool (); // setup physical memory PROCInit (); // initialize process VMInit (g_pprcNK); // setup VM for kernel THRDInit (); // initialize threads MapfileInit (); #ifdef DEBUG g_pNKGlobal->pfnWriteDebugString (TEXT("Scheduling the first thread.\r\n")); #endif }
这段代码跟WinCE5.0中的结构基本一致,但实际上有很大的不同。跟WinCE6.0启动最紧密的函数是THRDInit (),这之前都是做相应的初始化。THRDInit ()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\thread.c中,代码如下:
//------------------------------------------------------------------------------ // THRDInit - initialize thread handling (called at system startup) //------------------------------------------------------------------------------ void THRDInit (void) { LPBYTE pStack; DEBUGLOG (1, g_pprcNK); // don't allow thread create one memory drop below 1% available if (g_cMinPageThrdCreate < PageFreeCount / 100) { g_cMinPageThrdCreate = PageFreeCount / 100; } // map W32 thread priority if OEM choose to if (g_pOemGlobal->pfnMapW32Priority) { BYTE prioMap[MAX_WIN32_PRIORITY_LEVELS]; int i; memcpy (prioMap, W32PrioMap, sizeof (prioMap)); g_pOemGlobal->pfnMapW32Priority (MAX_WIN32_PRIORITY_LEVELS, prioMap); // validate the the priority is mono-increase for (i = 0; i < MAX_WIN32_PRIORITY_LEVELS-1; i ++) { if (prioMap[i] >= prioMap[i+1]) break; } DEBUGMSG ((MAX_WIN32_PRIORITY_LEVELS-1) != i, (L"ProcInit: Invalid priority map provided by OEM, Ignored!\r\n")); if ((MAX_WIN32_PRIORITY_LEVELS-1) == i) { memcpy (W32PrioMap, prioMap, sizeof (prioMap)); } } // allocate memory for the 1st thread pCurThread = AllocMem (HEAP_THREAD); DEBUGCHK (pCurThread); dwCurThId = (DWORD) HNDLCreateHandle (&cinfThread, pCurThread, g_pprcNK) & ~1; DEBUGCHK (dwCurThId); InitThreadStruct (pCurThread, (HANDLE) dwCurThId, g_pprcNK, THREAD_RT_PRIORITY_ABOVE_NORMAL); if (g_pOemGlobal->cbCoProcRegSize) { DEBUGCHK (g_pOemGlobal->pfnInitCoProcRegs); DEBUGCHK (g_pOemGlobal->pfnSaveCoProcRegs); DEBUGCHK (g_pOemGlobal->pfnRestoreCoProcRegs); // check the debug register related values. if (g_pOemGlobal->cbCoProcRegSize > MAX_COPROCREGSIZE) { g_pOemGlobal->cbCoProcRegSize = g_pOemGlobal->fSaveCoProcReg = 0; } else { PNAME pTmp = AllocName (g_pOemGlobal->cbCoProcRegSize); DEBUGCHK (pTmp); g_dwCoProcPool = pTmp->wPool; FreeName (pTmp); } } else { g_pOemGlobal->fSaveCoProcReg = FALSE; } DEBUGMSG (ZONE_SCHEDULE,(TEXT("cbCoProcRegSize = %d\r\n"), g_pOemGlobal->cbCoProcRegSize)); AddToDListHead (&g_pprcNK->thrdList, &pCurThread->thLink); g_pprcNK->wThrdCnt ++; #ifdef SHx SetCPUGlobals(); OEMCacheRangeFlush (0, 0, CACHE_SYNC_ALL); #endif if (!OpenExecutable (NULL, TEXT("NK.EXE"), &g_pprcNK->oe, TOKEN_SYSTEM, NULL, 0)) { LoadE32 (&g_pprcNK->oe, &g_pprcNK->e32, 0, 0, 0); g_pprcNK->BasePtr = (LPVOID)g_pprcNK->e32.e32_vbase; UpdateKmodVSize(&g_pprcNK->oe, &g_pprcNK->e32); } // create/setup stack pStack = VMCreateStack (g_pprcNK, KRN_STACK_SIZE); pCurThread->dwOrigBase = (DWORD) pStack; pCurThread->dwOrigStkSize = KRN_STACK_SIZE; pCurThread->tlsSecure = pCurThread->tlsNonSecure = pCurThread->tlsPtr = TLSPTR (pStack, KRN_STACK_SIZE); pCurThread->hTok = TOKEN_SYSTEM; // Save off the thread's program counter for getting its name later. pCurThread->dwStartAddr = (DWORD) SystemStartupFunc; MDSetupThread (pCurThread, (LPVOID)SystemStartupFunc, 0, TH_KMODE, 0); CELOG_ThreadCreate(pCurThread, g_pprcNK, NULL); MakeRun(pCurThread); DEBUGMSG(ZONE_SCHEDULE,(TEXT("Scheduler: Created master thread %8.8lx\r\n"),pCurThread)); }
可以看到,这里开始了一个线程,线程处理函数为SystemStartupFunc(),其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c,实现代码如下:
//------------------------------------------------------------------------------ void SystemStartupFunc( ulong param ) { HANDLE hTh; // record PendEvent address for SetInterruptEvent KInfoTable[KINX_PENDEVENTS] = (DWORD) &PendEvents1; KernelInit2(); // adjust alarm resolution if it it's not in bound if (g_pOemGlobal->dwAlarmResolution < MIN_NKALARMRESOLUTION_MSEC) g_pOemGlobal->dwAlarmResolution = MIN_NKALARMRESOLUTION_MSEC; else if (g_pOemGlobal->dwAlarmResolution > MAX_NKALARMRESOLUTION_MSEC) g_pOemGlobal->dwAlarmResolution = MAX_NKALARMRESOLUTION_MSEC; VERIFY (LoaderInit ()); // initialize the compiler /GS cookie - this must happen before other threads // start running __security_init_cookie(); PagePoolInit (); // This can only be done after the loader initialization LoggerInit(); // Initialization for CeLog, profiler, code-coverage, etc. SysDebugInit (); // initialize System Debugger (HW Debug stub, Kernel dump capture, SW Kernel Debug stub) // do this now, so that we continue running after we've created the new thread #ifdef START_KERNEL_MONITOR_THREAD hTh = CreateKernelThread(Monitor1,0,THREAD_RT_PRIORITY_ABOVE_NORMAL,0); HNDLCloseHandle (g_pprcNK, hTh); #endif pCleanupThread = pCurThread; hAlarmThreadWakeup = NKCreateEvent(0,0,0,0); DEBUGCHK(hAlarmThreadWakeup); InitializeCriticalSection(&rtccs); IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES] = LockIntrEvt (hAlarmThreadWakeup); DEBUGCHK(IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES]->phdIntr); // Give the OEM a final chance to do a more full-featured init before any // apps are started KernelIoctl (IOCTL_HAL_POSTINIT, NULL, 0, NULL, 0, NULL); InitMsgQueue (); InitWatchDog (); // create the power handler event and guard thread hEvtPwrHndlr = NKCreateEvent (NULL, FALSE, FALSE, NULL); DEBUGCHK (hEvtPwrHndlr); hTh = CreateKernelThread (PowerHandlerGuardThrd, NULL, THREAD_PWR_GUARD_PRIORITY, 0); HNDLCloseHandle (g_pprcNK, hTh); // dirty page event, initially set hEvtDirtyPage = NKCreateEvent (NULL, FALSE, TRUE, NULL); DEBUGCHK (hEvtDirtyPage); // we don't want to waste a thread here (create a separate for cleaning dirty pages). // Instead, RunApps thread will become "CleanDirtyPage" thread once filesys started hTh = CreateKernelThread (RunApps,0,THREAD_RT_PRIORITY_NORMAL,0); HNDLCloseHandle (g_pprcNK, hTh); #define ONE_DAY 86400000 while (1) { KCall((PKFN)SetThreadBasePrio, pCurThread, dwNKAlarmThrdPrio); NKWaitForSingleObject (hAlarmThreadWakeup, ONE_DAY); NKRefreshKernelAlarm (); PageOutIfNeeded(); } }
这里创建了一个内核线程,处理函数为RunApps,继续跟踪RunApps,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\kmisc.c中,代码如下:
DWORD WINAPI RunApps( LPVOID param ) { HMODULE hFilesys; DEBUGMSG (ZONE_ENTRY, (L"RunApps started\r\n")); CELOG_LaunchingFilesys(); hFilesys = (HMODULE) NKLoadLibraryEx (L"filesys.dll", MAKELONG (LOAD_LIBRARY_IN_KERNEL, LLIB_NO_PAGING), NULL); if (hFilesys) { FARPROC pfnMain = GetProcAddressA (hFilesys, (LPCSTR) 2); // WinMain of filesys HANDLE hFSReady, hTh; DEBUGCHK (pfnMain); hFSReady = NKCreateEvent (NULL, TRUE, FALSE, TEXT("SYSTEM/FSReady")); hTh = CreateKernelThread ((LPTHREAD_START_ROUTINE)pfnMain, hFilesys, THREAD_RT_PRIORITY_NORMAL, 0); DEBUGCHK (hTh && hFSReady); HNDLCloseHandle (g_pprcNK, hTh); // If pSignalStarted is NULL, we don't have filesys (tinykern). Don't bother waiting for it. if (pSignalStarted) { NKWaitForSingleObject (hFSReady, INFINITE); DEBUGCHK (SystemAPISets[SH_FILESYS_APIS]); // Initialize MUI-Resource loader (requires registry) InitMUILanguages(); // Read system settings from registry InitSystemSettings (); // signal filesys that we're done (* pSignalStarted) (0); } HNDLCloseHandle (g_pprcNK, hFSReady); } else { RETAILMSG (1, (L"Filesys doesn't exist, no app started\r\n")); } // instead of exiting, we're make this thread cleaning dirty pages in the background. CleanPagesInTheBackground (); // should've never returned DEBUGCHK (0); NKExitThread (0); return 0; }终于启动filesys.dll了。这个过程简单说明一下,启动filesys.dll后等待其执行的情况,在完成了文件系统的相应的初始化之后,这里继续初始化MUI和系统设置,完成后再通知filesys这边的工作已经完成,filesys继续启动。这一部分的具体内容请参考MSDN,File System Boot Process: http://msdn.microsoft.com/en-us/library/aa912276.aspx。总之,filesys会完成WinCE的最后启动过程,包括gwes.dll和explorer.exe等。至此,WinCE6.0启动完成,如果有LCD且驱动能正常工作,现在就应该能看见可爱的WinCE6.0的界面了。
呵,没想到WinCE6.0的启动过程竟然这么繁长。不过,弄清楚这个启动流程对于移植BSP相当有好处。总结一下整个过程,如下图所示。
本文通过跟踪代码的方式,介绍了WinCE6.0的启动流程。流于表面了一点,很多细节应该进一步研究,以后再慢慢看吧。文中有不确切的地方,也请您不吝赐教.