上一篇博客主要介绍了频繁模式树的建立过程,那么这颗频繁模式树究竟能够表现出什么哪?先看下图的一颗频繁模式树。
频繁项头表的每一行都是相同的频繁项,用一个有向链表表示相互联系,用于表示树中频繁项的映射。每一个数据项都有一组前缀路径,由根节点到所有该数据项节点的路径及该数据项节点的次数组成,如下图所示:
那么前缀路径表示什么意思?很明显,对于t的一个前缀路径{z,x,y,s} 2,就能表示一个数据集中的两个事务是{z,x,y,s,t},对于所有的前缀路径,我们可以建造一颗频繁模式树,这棵树叫做条件频繁模式树,所谓的条件就是在已知前缀路径能够推出t满足最小门限值的意思,因此上述问题可以描述为{z,x,y,s}->t的支持度是2,{z,x,y,r}->t的支持度是1,因此我们可以根据前缀路径建造一颗频繁模式树(和前面建造的方式是一样的),如果我们设置门限值是3很显然,在构造树的时候s与r会被去除,这样我们就得到{z,x,y,t}({z,x,y}->t)的支持度是3,接着{x,t}支持度3{{x}->{y}},在接着{z,x,t}支持度3{{z,x}->{t}}和{y,x,t}支持度3{{y,x}->{t}}……..,同样对新生成的数据(条件频繁模式树,频繁项头表)继续进行挖掘,知道仅剩一个事务项为止。还是建议仔细研究代码,在读代码的过程中可以加深理解。
''' Created on Jun 14, 2011 FP-Growth FP means frequent pattern the FP-Growth algorithm needs: 1. FP-tree (class treeNode) 2. header table (use dict) This finds frequent itemsets similar to apriori but does not find association rules. @author: Peter '''
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode #needs to be updated
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print ' '*ind, self.name, ' ', self.count
for child in self.children.values():
child.disp(ind+1)
def createTree(dataSet, minSup=1): #create FP-tree from dataset but don't mine
headerTable = {}
#go over dataSet twice
for trans in dataSet:#first pass counts frequency of occurance
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
for k in headerTable.keys(): #remove items not meeting minSup
if headerTable[k] < minSup:
del(headerTable[k])
freqItemSet = set(headerTable.keys())
if len(freqItemSet) == 0: return None, None #if no items meet min support -->get out
for k in headerTable:
headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link
retTree = treeNode('Null Set', 1, None) #create tree
for tranSet, count in dataSet.items(): #go through dataset 2nd time
localD = {}
for item in tranSet: #put transaction items in order
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
return retTree, headerTable #return tree and header table
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
inTree.children[items[0]].inc(count) #incrament count
else: #add items[0] to inTree.children
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTable[items[0]][1] == None: #update header table
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1:#call updateTree() with remaining ordered items
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
def updateHeader(nodeToTest, targetNode): #this version does not use recursion
while (nodeToTest.nodeLink != None): #Do not use recursion to traverse a linked list!
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count
treeNode = treeNode.nodeLink
return condPats
def mineTree(inTree, headerTable, minSup, preFix, freqItemList, i=1):
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
# print 'bigL',sorted(headerTable.items(), key=lambda p: p[1])
for basePat in bigL: #start from bottom of header table
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
print 'newFreqSet',newFreqSet
freqItemList.append(newFreqSet)
print 'freqItemList',freqItemList
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
# print 'condPattBases',condPattBases
print 'create ', i
i = i+1
print 'basePat', basePat
print 'condPattBases', condPattBases
myCondTree, myHead = createTree(condPattBases, minSup)
# myCondTree.disp()
# print 'myCondTree',myCondTree
print 'myHead', myHead
if myHead != None: #3. mine cond. FP-tree
# print 'yy'
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList, i)
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
minSup = 3
simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myFPtree, myHeaderTab = createTree(initSet, minSup)
# myFPtree.disp()
# print findPrefixPath('x', myHeaderTab['x'][1])
# print findPrefixPath('z', myHeaderTab['z'][1])
# print findPrefixPath('r', myHeaderTab['r'][1])
freqItems = []
mineTree(myFPtree, myHeaderTab, 3, set([]), freqItems)
print freqItems
# myFreqList = []
# mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
# {x,s}, {z,x,y}, and {z}