K近邻算法(K Nearest Neighbor, KNN)可以说是最简单的算法,但是其基本的思想却在许多算法中出现,比如:个性化推荐系统中,基于用户(based users)或者是基于商品(based items)算法,都是先根据相似度进行排序,然后选取前k个作为推荐的对象,当然这与KNN算法还是有一些出入,但是其基本思想我认为是一致的。有的人说KNN是用于分类算法的,但是我觉得把KNN算法作为回归似乎也是可以的,比如我们取K个近邻的均值作为预测结果,或者直接依据K个近邻使用最小二乘法(后面有机会,会专门写一篇博客介绍最小二乘法),不过这篇文章还是根据Machine Learning Action进行讲解,并且进行相应的补充,主要是在相似度计算这一块,加强一些。下面是KNN算法的步骤:
遍历数据集并且计算和带预测样本的相似度,选取前k个最相似的实例,这k个样本中最大的类别数目作为最终预测样本的类别。
说句实话,KNN本身并没有什么太多的研究价值,下面我打算借此机会介绍一下常用的相似度计算:
1 欧几里得距离(Euclidean Distance, ED):
2 曼哈顿距离(Manhattan Distance, MD):
3 余弦相似度(Cosine Similarity)
4 Jaccard相似系数
5 皮尔森相关系数(Pearson Correlation Coefficient
下面是Python的代码。
from numpy import *
import operator
from os import listdir
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] # row_size
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
print sqDiffMat
sqDistances = sqDiffMat.sum(axis=1) # axis = 0 for col, and axis = 1 for row
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=lambda x:x[1], reverse=True)
return sortedClassCount[0][0]
def file2maxtrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines())
returnMat = zeros((numberOfLines,3))
classLabelVector = []
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:]=listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = shape(dataSet)[0]
# print dataSet.shape(0)
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet, ranges, minVals
def datingClassText():
hoRatio = 0.10
datingDataMat, datingLabels = file2maxtrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = shape(normMat)[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
def classifyPerson():
resultList = ['not at all','in small doses', 'in large doses']
percentTats = float(raw_input("percentage of time spent playing video games?"))
ffMiles = float(raw_input("frequent flier miles earned per year?"))
iceCream = float(raw_input("liters of ice cream consumed per year?"))
datingDataMat,datingLabels = file2maxtrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print "You will probably like this person: ",resultList[classifierResult - 1]
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('digits/trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('digits/trainingDigits/%s' % fileNameStr)
testFileList = listdir('digits/testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
datingDataMat, datingLabels = file2maxtrix('datingTestSet2.txt')
# fig = plt.figure()
# ax = fig.add_subplot(111)
# ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
# ax.axis([-2,25,-0.2,2.0])
# plt.xlabel('Percentage of Time Spent Playing Video Games')
# plt.ylabel('Liters of Ice Cream Consumed Per Week')
# plt.show()
# normMat, ranges, minVals = autoNorm(datingDataMat)
# print normMat
# print ranges
# print minVals
# datingClassText()
# classifyPerson()
# testVector =img2vector('digits/testDigits/0_13.txt')
# print testVector[0,0:31]
# # print testVector[0,32:63]
# handwritingClassTest()
import numpy as np
import matplotlib.pyplot as plt
x = np.random.rand(3, 2) * 10
a = np.matrix([ [1,x[0][0]], [1,x[1][0]], [1,x[2][0]] ])
b = np.matrix([ [x[0][1]], [x[1][1]], [x[2][1]] ])
yy = (a.T * a).I * a.T * b
xx = np.linspace(1, 10, 50)
y = np.array(yy[0] + yy[1] * xx)
plt.figure(1)
plt.plot(xx, y.T, color='r')
plt.scatter([x[0][0], x[1][0], x[2][0] ], [x[0][1], x[1][1], x[2][1] ])
plt.show()