说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。
(做数据集的过程可以看这里)
Faster-RCNN源码下载地址:
matlab版本:https://github.com/ShaoqingRen/faster_rcnn
python版本:https://github.com/rbgirshick/py-faster-rcnn
本文用到的是matlab版本,在windows下运行。
准备工作:
如果你的cuda是6.5,那么,运行一下:
fetch_data/fetch_caffe_mex_windows_vs2013_cuda65.m得到mex文件。如果不是cuda6.5,则需要自己编译mex文件,在训练前,请确保你的路径:
faster_rcnn-master\external\caffe\matlab\caffe_faster_rcnn下有以下文件:
(我的opencv用的版本是2.4.9,cuda版本是7.5)
VOCopts.annopath=[VOCopts.datadir VOCopts.dataset '/Annotations/%s.xml']; VOCopts.imgpath=[VOCopts.datadir VOCopts.dataset '/JPEGImages/%s.jpg']; VOCopts.imgsetpath=[VOCopts.datadir VOCopts.dataset '/ImageSets/Main/%s.txt']; VOCopts.clsimgsetpath=[VOCopts.datadir VOCopts.dataset '/ImageSets/Main/%s_%s.txt']; VOCopts.clsrespath=[VOCopts.resdir 'Main/%s_cls_' VOCopts.testset '_%s.txt']; VOCopts.detrespath=[VOCopts.resdir 'Main/%s_det_' VOCopts.testset '_%s.txt'];
上面这些路径要正确,第一个是xml标签路径;第二个是图片的路径;第三个是放train.txt、val.txt、test.txt和trainval.txt的路径;第四、五、六个不需要;一般来说这些路径不用修改,你做的数据集格式和VOC2007相同就行。
VOCopts.dataset = '你的文件夹名';
VOCopts.classes={... '你的标签1' '你的标签2' '你的标签3' '你的标签4'};将其改为你的标签。
results下需要新建一个文件夹,名字是1. (2)中“你的文件夹名”。“你的文件夹名”下新建一个Main文件夹。
local下需要新建一个文件夹,名字是1. (2)中“你的文件夹名”。
ip.addParamValue('val_iters', 500, @isscalar); ip.addParamValue('val_interval', 2000, @isscalar);
可能在randperm(N,k)出现错误,根据数据集修改。(一般将val_iters改小点就行).
这里的问题和fast_rcnn_train.m一样。
%do_eval = (str2num(year) <= 2007) | ~strcmp(test_set,'test'); do_eval = 1;注释掉
do_eval = (str2num(year) <= 2007) | ~strcmp(test_set,'test');并令其为1,否则测试会出现精度全为0的情况
ip.addParamValue('exclude_difficult_samples', true, @islogical);不包括难识别的样本,所以设置为true。(如果有就设置为false)
input: "bbox_targets" input_dim: 1 # to be changed on-the-fly to match num ROIs input_dim: 84 # 根据类别数改,该值为(类别数+1)*4 ################# input_dim: 1 input_dim: 1
input: "bbox_loss_weights" input_dim: 1 # to be changed on-the-fly to match num ROIs input_dim: 84 # 根据类别数改,该值为(类别数+1)*4 ############</span> input_dim: 1 input_dim: 1
layer { bottom: "fc7" top: "cls_score" name: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } type: "InnerProduct" inner_product_param { num_output: 21 #根据类别数改该值为类别数+1 #########
layer { bottom: "fc7" top: "bbox_pred" name: "bbox_pred" type: "InnerProduct" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 84 #根据类别数改,该值为(类别数+1)*4 ##########
layer { bottom: "fc7" top: "cls_score" name: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } type: "InnerProduct" inner_product_param { num_output: 21 #类别数+1 ##########
layer { bottom: "fc7" top: "bbox_pred" name: "bbox_pred" type: "InnerProduct" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 84 #4*(类别数+1) ##########
input: "bbox_targets" input_dim: 1 # to be changed on-the-fly to match num ROIs input_dim: 84 # 4*(类别数+1) ########### input_dim: 1 input_dim: 1
input: "bbox_loss_weights" input_dim: 1 # to be changed on-the-fly to match num ROIs input_dim: 84 # 4*(类别数+1) ########### input_dim: 1 input_dim: 1
layer { bottom: "fc7" top: "cls_score" name: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } type: "InnerProduct" inner_product_param { num_output: 21 #类别数+1 ############
layer { bottom: "fc7" top:"bbox_pred" name:"bbox_pred" type:"InnerProduct" param { lr_mult:1.0 } param { lr_mult:2.0 } inner_product_param{ num_output: 84 #4*(类别数+1) ###########
layer { bottom: "fc7" top: "cls_score" name: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } type: "InnerProduct" inner_product_param { num_output: 21 类别数+1 #######
layer { bottom: "fc7" top: "bbox_pred" name: "bbox_pred" type: "InnerProduct" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 84 #4*(类别数+1) ##########
运行:
experiments/script_faster_rcnn_VOC2007_ZF.m
将relu5(包括relu5)前的层删除,并将roi_pool5的bottom改为data和rois。并且前面的input_dim:分别改为1,256,50,50(如果是VGG就是1,512,50,50,其他修改基本一样),具体如下
input: "data" input_dim: 1 input_dim: 256 input_dim: 50 input_dim: 50
# ------------------------ layer 1 ----------------------------- layer { bottom: "data" bottom: "rois" top: "pool5" name: "roi_pool5" type: "ROIPooling" roi_pooling_param { pooled_w: 6 pooled_h: 6 spatial_scale: 0.0625 # (1/16) } }
model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC2007_ZF')
将测试图片改成你的图片,im_names = {'001.jpg', '002.jpg', '003.jpg'};
注意:如果你的数据集类别比voc2007多,把script_faster_rcnn_demo.m中的showboxes(im, boxes_cell, classes, 'voc')修改为:showboxes(im, boxes_cell, classes);或者:
showboxes(im, boxes_cell, classes, 'default');