GCC-3.4.6源代码学习笔记(79)

5.6.1.1.2.2.  浮点数

解析整数字符串已经相当麻烦,而浮点数字符串的情况更要复杂得多。同样首先为将要创建的REAL_CST节点选定伴随的类型节点。默认的浮点数具有类型doubleCPP_N_MEDIUM)。

 

568  static tree

569  interpret_float (const cpp_token *token, unsigned int flags)                           in c-lex.c

570  {

571    tree type;

572    tree value;

573    REAL_VALUE_TYPE real;

574    char *copy;

575    size_t copylen;

576    const char *typename;

577 

578   /* FIXME: make %T work in error/warning, then we don't need typename.  */

579    if ((flags & CPP_N_WIDTH) == CPP_N_LARGE)

580    {

581      type = long_double_type_node;

582      typename = "long double";

583    }

584    else if ((flags & CPP_N_WIDTH) == CPP_N_SMALL

585       || flag_single_precision_constant)

586    {

587      type = float_type_node;

588      typename = "float";

589    }

590    else

591    {

592      type = double_type_node;

593      typename = "double";

594    }

595 

596    /* Copy the constant to a nul-terminated buffer. If the constant

597      has any suffixes, cut them off; REAL_VALUE_ATOF/ REAL_VALUE_HTOF

598      can't handle them.  */

599    copylen = token->val.str.len;

600    if ((flags & CPP_N_WIDTH) != CPP_N_MEDIUM)

601      /* Must be an F or L suffix.  */

602      copylen--;

603    if (flags & CPP_N_IMAGINARY)

604      /* I or J suffix.  */

605      copylen--;

606 

607    copy = alloca (copylen + 1);

608    memcpy (copy, token->val.str.text, copylen);

609    copy[copylen] = '/0';

610 

611     real_from_string (&real, copy);

612    real_convert (&real, TYPE_MODE (type), &real);

613 

614   /* A diagnostic is required for "soft" overflow by some ISO C

615      testsuites. This is not pedwarn, because some people don't want

616      an error for this.

617      ??? That's a dubious reason... is this a mandatory diagnostic or

618      isn't it?  -- zw, 2001-08-21.  */

619    if (REAL_VALUE_ISINF (real) && pedantic)

620      warning ("floating constant exceeds range of /"%s/"", typename);

621 

622    /* Create a node with determined type and value.  */

623    value = build_real (type, real);

624    if (flags & CPP_N_IMAGINARY)

625      value = build_complex (NULL_TREE, convert (type, integer_zero_node), value);

626 

627    return value;

628  }

 

接下来,确定浮点数字符串所对应的浮点值。我们已经看到浮点数常量有2种表示方式,一种是16进制,其指数部分以2为底;另一种是10进制,其指数部分以10为底。不过不管是何种方式,首先在1765行将r0,并置为无符号。

 

1759 void

1760 real_from_string (REAL_VALUE_TYPE *r, const char *str)                                in real.c

1761{

1762  int exp = 0;

1763  bool sign = false;

1764

1765  get_zero (r, 0);

1766

1767  if (*str == '-')

1768  {

1769    sign = true;

1770    str++;

1771   }

1772   else if (*str == '+')

1773     str++;

1774

1775   if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))

1776   {

1777     /* Hexadecimal floating point.  */

1778     int pos = SIGNIFICAND_BITS - 4, d;

1779

1780     str += 2;

1781

1782     while (*str == '0')

1783        str++;

1784     while (1)

1785     {

1786       d = hex_value (*str);

1787       if (d == _hex_bad)

1788         break;

1789       if (pos >= 0)

1790       {

1791         r->sig[pos / HOST_BITS_PER_LONG]

1792            |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);

1793         pos -= 4;

1794      }

1795       exp += 4;

1796       str++;

1797     }

1798    if (*str == '.')

1799    {

1800      str++;

1801      if (pos == SIGNIFICAND_BITS - 4)

1802      {

1803        while (*str == '0')

1804          str++, exp -= 4;

1805      }

1806      while (1)

1807      {

1808        d = hex_value (*str);

1809        if (d == _hex_bad)

1810            break;

1811        if (pos >= 0)

1812        {

1813           r->sig[pos / HOST_BITS_PER_LONG]

1814                 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);

1815            pos -= 4;

1816        }

1817         str++;

1818        }

1819     }

1820    if (*str == 'p' || *str == 'P')

1821    {

1822      bool exp_neg = false;

1823

1824      str++;

1825      if (*str == '-')

1826      {

1827         exp_neg = true;

1828         str++;

1829       }

1830       else if (*str == '+')

1831        str++;

1832

1833       d = 0;

1834       while (ISDIGIT (*str))

1835       {

1836         d *= 10;

1837         d += *str - '0';

1838         if (d > MAX_EXP)

1839         {

1840           /* Overflowed the exponent.  */

1841           if (exp_neg)

1842             goto underflow;

1843           else

1844             goto overflow;

1845         }

1846         str++;

1847       }

1848       if (exp_neg)

1849         d = -d;

1850

1851       exp += d;

1852     }

1853

1854    r->class = rvc_normal;

1855    r->exp = exp;

1856

1857    normalize (r);

1858  }

 

对于第一种方式,它以“0x/0X”开头。REAL_VALUE_TYPE我们在前面看过(tree_real_cst节点一节),是编译器表示浮点数的内部形式。SIGNIFICAND_BITS是该形式的尾数位(128 + HOST_BITS_PER_LONG = 160),EXP_BITS是其指数位(27)。从上面的代码可以看出,如果给出的字符串过长,填满尾数位后,编译器不再理会尾数位,只是增加指数位(如果字符串中没有指数部分,这个指数位留给normalize检查)。注意17951804行,对于exp的调整,这使得尾数位保持在0.xx…x这样的形式。1857行的normalize则对得到的数值进行规范化,使精度尽可能的高(这里基本无事可做)。

而第二种10进制方式,不能通过简单地移位来实现进位,只能采用稍许麻烦些的办法。

 

real_from_string (continue)

 

1859  else

1860  {

1861    /* Decimal floating point.  */

1862    const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);

1863    int d;

1864

1865    while (*str == '0')

1866       str++;

1867    while (ISDIGIT (*str))

1868    {

1869      d = *str++ - '0';

1870      do_multiply (r, r, ten);

1871      if (d)

1872        do_add (r, r, real_digit (d), 0);

1873    }

1874    if (*str == '.')

1875    {

1876      str++;

1877      if (r->class == rvc_zero)

1878      {

1879        while (*str == '0')

1880          str++, exp--;

1881      }

1882      while (ISDIGIT (*str))

1883      {

1884        d = *str++ - '0';

1885        do_multiply (r, r, ten);

1886        if (d)

1887          do_add (r, r, real_digit (d), 0);

1888        exp--;

1889      }

1890    }

1891

1892    if (*str == 'e' || *str == 'E')

1893    {

1894      bool exp_neg = false;

1895

1896      str++;

1897      if (*str == '-')

1898      {

1899        exp_neg = true;

1900        str++;

1901      }

1902      else if (*str == '+')

1903      str++;

1904

1905      d = 0;

1906      while (ISDIGIT (*str))

1907      {

1908        d *= 10;

1909        d += *str - '0';

1910        if (d > MAX_EXP)

1911        {

1912          /* Overflowed the exponent.  */

1913          if (exp_neg)

1914            goto underflow;

1915          else

1916            goto overflow;

1917        }

1918        str++;

1919      }

1920      if (exp_neg)

1921        d = -d;

1922      exp += d;

1923    }

1924

1925    if (exp)

1926      times_pten (r, exp);

1927  }

1928

1929   r->sign = sign;

1930   return;

1931

1932 underflow:

1933   get_zero (r, sign);

1934   return;

1935

1936 overflow:

1937   get_inf (r, sign);

1938   return;

1939 }

 

函数ten_to_ptwo返回REAL_VALUE_TYPE 形式的数值10**2**n。在1862行,我们得到的是10。注意2012行,rvc_zero表明该tens的数值还没有计算出来,否则它应该是rvc_normal

 

2004 static const REAL_VALUE_TYPE *                                                                   in real.c

2005 ten_to_ptwo (int n)

2006 {

2007   static REAL_VALUE_TYPE tens[EXP_BITS];

2008

2009   if (n < 0 || n >= EXP_BITS)

2010     abort ();

2011

2012   if (tens[n].class == rvc_zero)

2013   {

2014     if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))

2015     {

2016        HOST_WIDE_INT t = 10;

2017       int i;

2018

2019        for (i = 0; i < n; ++i)

2020         t *= t;

2021

2022        real_from_integer (&tens[n], VOIDmode, t, 0, 1);

2023     }

2024     else

2025     {

2026        const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);

2027       do_multiply (&tens[n], t, t);

2028     }

2029   }

2030

2031   return &tens[n];

2032 }

 

函数do_multiply只接受REAL_VALUE_TYPE形式的参数。这就是上面调用ten_to_ptwo构建REAL_VALUE_TYPE形式数值10的原因。do_multiply执行计算r = a * b。首先,检查浮点数的特殊情形。下面CLASS2的定义为:#define CLASS2(A, B)  ((A) << 2 | (B)),它构建对应这对浮点数类型的唯一数值。

 

662  static bool

663  do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,              in real.c

664              const REAL_VALUE_TYPE *b)

665  {

666    REAL_VALUE_TYPE u, t, *rr;

667    unsigned int i, j, k;

668    int sign = a->sign ^ b->sign;

669    bool inexact = false;

670 

671    switch (CLASS2 (a->class, b->class))

672    {

673      case CLASS2 (rvc_zero, rvc_zero):

674      case CLASS2 (rvc_zero, rvc_normal):

675      case CLASS2 (rvc_normal, rvc_zero):

676        /* +-0 * ANY = 0 with appropriate sign.  */

677        get_zero (r, sign);

678        return false;

679 

680      case CLASS2 (rvc_zero, rvc_nan):

681      case CLASS2 (rvc_normal, rvc_nan):

682      case CLASS2 (rvc_inf, rvc_nan):

683      case CLASS2 (rvc_nan, rvc_nan):

684        /* ANY * NaN = NaN.  */

685        *r = *b;

686        r->sign = sign;

687        return false;

688 

689      case CLASS2 (rvc_nan, rvc_zero):

690      case CLASS2 (rvc_nan, rvc_normal):

691      case CLASS2 (rvc_nan, rvc_inf):

692        /* NaN * ANY = NaN.  */

693        *r = *a;

694        r->sign = sign;

695        return false;

696 

697      case CLASS2 (rvc_zero, rvc_inf):

698      case CLASS2 (rvc_inf, rvc_zero):

699        /* 0 * Inf = NaN */

700        get_canonical_qnan (r, sign);

701        return false;

702 

703      case CLASS2 (rvc_inf, rvc_inf):

704      case CLASS2 (rvc_normal, rvc_inf):

705      case CLASS2 (rvc_inf, rvc_normal):

706        /* Inf * Inf = Inf, R * Inf = Inf */

707        get_inf (r, sign);

708        return false;

709 

710      case CLASS2 (rvc_normal, rvc_normal):

711         break;

712 

713      default:

714        abort ();

715    }

716 

717    if (r == a || r == b)

718      rr = &t;

719    else

720      rr = r;

721    get_zero (rr, 0);

722 

723    /* Collect all the partial products. Since we don't have sure access

724      to a widening multiply, we split each long into two half-words.

725 

726      Consider the long-hand form of a four half-word multiplication:

727 

728        A  B  C  D

729      *  E  F  G  H

730         --------------------

731            DE DF DG DH

732          CE CF CG CH

733         BE BF BG BH

734       AE AF AG AH

735 

736      We construct partial products of the widened half-word products

737      that are known to not overlap, e.g. DF+DH. Each such partial

738      product is given its proper exponent, which allows us to sum them

739      and obtain the finished product.  */

740 

741    for (i = 0; i < SIGSZ * 2; ++i)

742    {

743      unsigned long ai = a->sig[i / 2];

744      if (i & 1)

745        ai >>= HOST_BITS_PER_LONG / 2;

746      else

747        ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;

748 

749      if (ai == 0)

750        continue;

751 

752      for (j = 0; j < 2; ++j)

753      {

754        int exp = (a->exp - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)

755                 + (b->exp - (1-j)*(HOST_BITS_PER_LONG/2)));

756 

757        if (exp > MAX_EXP)

758        {

759          get_inf (r, sign);

760          return true;

761        }

762        if (exp < -MAX_EXP)

763        {

764          /* Would underflow to zero, which we shouldn't bother adding.  */

765          inexact = true;

766          continue;

767        }

768 

769        memset (&u, 0, sizeof (u));

770        u.class = rvc_normal;

771        u.exp = exp;

772 

773        for (k = j; k < SIGSZ * 2; k += 2)

774        {

775          unsigned long bi = b->sig[k / 2];

776          if (k & 1)

777            bi >>= HOST_BITS_PER_LONG / 2;

778          else

779            bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;

780 

781          u.sig[k / 2] = ai * bi;

782        }

783 

784         normalize (&u);

785        inexact |= do_add (rr, rr, &u, 0);

786      }

787    }

788 

789    rr->sign = sign;

790    if (rr != r)

791      *r = t;

792 

793    return inexact;

794  }

 

如果是正常的浮点数,717行以下的代码将被执行。注意,虽然我们现在处理的是十进制形式的浮点数,但是REAL_VALUE_TYPE却是16进制的表示形式。这里的初始值0及倍数10都是REAL_VALUE_TYPE的形式。包括在real_from_string18721887行对读入数字的处理也是通过real_digit为其生成REAL_VALUE_TYPE形式的值。

 

2052 static const REAL_VALUE_TYPE *

2053 real_digit (int n)                                                                                               in real.c

2054 {

2055   static REAL_VALUE_TYPE num[10];

2056

2057   if (n < 0 || n > 9)

2058     abort ();

2059

2060   if (n > 0 && num[n].class == rvc_zero)

2061     real_from_integer (&num[n], VOIDmode, n, 0, 1);

2062

2063   return &num[n];

2064 }

 

REAL_VALUE_TYPE的尾数位部分是long类型的数组,SIGSZ是这个数组的大小。那么754767检查731734行注释中所显示的部分积的指数部分是否溢出784行的normalize会对整个部分积的结果检查溢出并尽可能保留精度这很重要

而由REAL_VALUE_TYPE形式所表示的值的加减法r = a + br = a - b,要由do_add来执行。

 

522  static bool

523  do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,                     in real.c

524         const REAL_VALUE_TYPE *b, int subtract_p)

525  {

526    int dexp, sign, exp;

527    REAL_VALUE_TYPE t;

528    bool inexact = false;

529 

530    /* Determine if we need to add or subtract.  */

531    sign = a->sign;

532    subtract_p = (sign ^ b->sign) ^ subtract_p;

533 

534    switch (CLASS2 (a->class, b->class))

535    {

536      case CLASS2 (rvc_zero, rvc_zero):

537        /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0.  */

538        get_zero (r, sign & !subtract_p);

539        return false;

540 

541      case CLASS2 (rvc_zero, rvc_normal):

542      case CLASS2 (rvc_zero, rvc_inf):

543      case CLASS2 (rvc_zero, rvc_nan):

544        /* 0 + ANY = ANY.  */

545      case CLASS2 (rvc_normal, rvc_nan):

546      case CLASS2 (rvc_inf, rvc_nan):

547      case CLASS2 (rvc_nan, rvc_nan):

548        /* ANY + NaN = NaN.  */

549      case CLASS2 (rvc_normal, rvc_inf):

550        /* R + Inf = Inf.  */

551        *r = *b;

552        r->sign = sign ^ subtract_p;

553        return false;

554 

555      case CLASS2 (rvc_normal, rvc_zero):

556      case CLASS2 (rvc_inf, rvc_zero):

557      case CLASS2 (rvc_nan, rvc_zero):

558        /* ANY + 0 = ANY.  */

559      case CLASS2 (rvc_nan, rvc_normal):

560      case CLASS2 (rvc_nan, rvc_inf):

561        /* NaN + ANY = NaN.  */

562      case CLASS2 (rvc_inf, rvc_normal):

563        /* Inf + R = Inf.  */

564        *r = *a;

565        return false;

566 

567      case CLASS2 (rvc_inf, rvc_inf):

568        if (subtract_p)

569          /* Inf - Inf = NaN.  */

570          get_canonical_qnan (r, 0);

571        else

572          /* Inf + Inf = Inf.  */

573          *r = *a;

574        return false;

575 

576      case CLASS2 (rvc_normal, rvc_normal):

577        break;

578 

579      default:

580        abort ();

581    }

582 

583    /* Swap the arguments such that A has the larger exponent.  */

584    dexp = a->exp - b->exp;

585    if (dexp < 0)

586    {

587      const REAL_VALUE_TYPE *t;

588      t = a, a = b, b = t;

589      dexp = -dexp;

590      sign ^= subtract_p;

591    }

592    exp = a->exp;

593 

594    /* If the exponents are not identical, we need to shift the

595      significand of B down.  */

596    if (dexp > 0)

597    {

598      /* If the exponents are too far apart, the significands

599        do not overlap, which makes the subtraction a noop.  */

600      if (dexp >= SIGNIFICAND_BITS)

601      {

602         *r = *a;

603         r->sign = sign;

604         return true;

605      }

606 

607      inexact |= sticky_rshift_significand (&t, b, dexp);

608      b = &t;

609    }

610 

611     if (subtract_p)

612    {

613      if (sub_significands (r, a, b, inexact))

614      {

615         /* We got a borrow out of the subtraction. That means that

616           A and B had the same exponent, and B had the larger

617           significand. We need to swap the sign and negate the

618           significand.  */

619        sign ^= 1;

620        neg_significand (r, r);

621      }

622    }

623    else

624    {

625      if (add_significands (r, a, b))

626      {

627        /* We got carry out of the addition. This means we need to

628           shift the significand back down one bit and increase the

629           exponent.  */

630        inexact |= sticky_rshift_significand (r, r, 1);

631        r->sig[SIGSZ-1] |= SIG_MSB;

632        if (++exp > MAX_EXP)

633         {

634          get_inf (r, sign);

635           return true;

636        }

637      }

638    }

639 

640    r->class = rvc_normal;

641    r->sign = sign;

642    r->exp = exp;

643    /* Zero out the remaining fields.  */

644    r->signalling = 0;

645    r->canonical = 0;

646 

647    /* Re-normalize the result.  */

648    normalize (r);

649 

650    /* Special case: if the subtraction results in zero, the result

651      is positive.  */

652    if (r->class == rvc_zero)

653      r->sign = 0;

654    else

655      r->sig[0] |= inexact;

656 

657    return inexact;

658  }

 

加减法的操作数的指数部分必须要调整到一致。在上面585591行,我们把b设为指数部分更大的值,并右移使其与a的指数部分对齐。如果在计算过程中丢了位,inexact将为1,那么在655行把结果的最低位设为1(类似四舍五入)。

因为十进制表达形式的指数部分以10为底,那么在real_from_string1926行,这个指数部分要由times_pten与尾数部分进行计算。

 

2068 static void

2069 times_pten (REAL_VALUE_TYPE *r, int exp)                                                   in real.c

2070 {

2071   REAL_VALUE_TYPE pten, *rr;

2072   bool negative = (exp < 0);

2073   int i;

2074

2075   if (negative)

2076   {

2077     exp = -exp;

2078     pten = *real_digit (1);

2079     rr = &pten;

2080   }

2081   else

2082     rr = r;

2083

2084   for (i = 0; exp > 0; ++i, exp >>= 1)

2085     if (exp & 1)

2086       do_multiply (rr, rr, ten_to_ptwo (i));

2087

2088   if (negative)

2089     do_divide (r, r, &pten);

2090 }

 

对于指数为负数时,我们把它转为除法运算,这里我们不深入do_divide了,它里面进行的是2进制的除法。从real_from_string回来,虽然我们可以2种形式给出浮点数常量,但最终它们都只有REAL_VALUE_TYPE这种16进制的形式。然后在interpret_float612行,real_convert将该值扩展或裁剪至符合指定的类型。一切非常完美。

 

你可能感兴趣的:(String,tree,Integer,Class,float,hex)