机器学习之岭回归

上一篇博客简单的说了说线性回归http://blog.csdn.net/sihuahaisifeihua/article/details/50655469,线性回归一个问题就是当
XXT 逆矩阵不存在时无法计算,为了解决上述问题,可以增加一个单位矩阵,如下所示:
w^=(xTx+λI)1xTy
这样子就可以确保逆矩阵的存在,当然有相关基础的人就知道,这不是正则化惩罚项吗?对,这就是L2正则化,下面就简单的来一下L1和L2正则化。
L1正则化:
k=1n|wk|λ
L1正则化要求特征对应的权值大部分是0或者很小的数,这样就可以去除噪声数据的影响。
此时把原始的均方误差+L1正则化如下:
argmini=1n(yxw)2
s.t.k=1m|wk|λ
使用拉格朗日数乘法就可以得到我们熟悉的正则化优化目标函数了:
mini=1n(yxw)2+λk=1m|wk|λλ
等价于:
mini=1n(yxw)2+λk=1m|wk|
L2正则化要求特征权值的平方和小于某个数,这是为了防止具有相关特性的特征其权值有可能一个是正数很大,另一个是负数很大,造成该特征无法被算法利用。定义如下:
argmini=1n(yxw)2
s.t.k=1m(wk)2λ
同样使用拉格朗日数乘法可以得到:
mini=1n(yxw)2+λk=1m(wk)2
这就是L1和L2正则化,后面我会在逻辑回归继续说一说正则化的作用。《Machine learning Action》书中还有一个叫做Forward stagewise regression,其实就是穷举法,贪婪搜索,具体的看看代码就基本上知道是什么意思了。
如何选择正则化参数哪?书中介绍的是使用交叉验证发,关于交叉验证法其实也很简单:就是随机测试集,验证集,然后选择最好的权值w作为结果。

''' Created on Jan 8, 2011 @author: Peter '''
from numpy import *

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws

def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
    m = shape(xMat)[0]
    weights = mat(eye((m)))
    for j in range(m):                      #next 2 lines create weights matrix
        diffMat = testPoint - xMat[j,:]     #
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
    xTx = xMat.T * (weights * xMat)
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws

def lwlrTest(testArr,xArr,yArr,k=1.0):  #loops over all the data points and applies lwlr to each one
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat

def lwlrTestPlot(xArr,yArr,k=1.0):  #same thing as lwlrTest except it sorts X first
    yHat = zeros(shape(yArr))       #easier for plotting
    xCopy = mat(xArr)
    xCopy.sort(0)
    for i in range(shape(xArr)[0]):
        yHat[i] = lwlr(xCopy[i],xArr,yArr,k)
    return yHat,xCopy

def rssError(yArr,yHatArr): #yArr and yHatArr both need to be arrays
    return ((yArr-yHatArr)**2).sum()

def ridgeRegres(xMat,yMat,lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx + eye(shape(xMat)[1])*lam
    if linalg.det(denom) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = denom.I * (xMat.T*yMat)
    return ws

def ridgeTest(xArr,yArr):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #to eliminate X0 take mean off of Y
    #regularize X's
    xMeans = mean(xMat,0)   #calc mean then subtract it off
    xVar = var(xMat,0)      #calc variance of Xi then divide by it
    xMat = (xMat - xMeans)/xVar
    numTestPts = 30
    wMat = zeros((numTestPts,shape(xMat)[1]))
    for i in range(numTestPts):
        ws = ridgeRegres(xMat,yMat,exp(i-10))
        wMat[i,:]=ws.T
    return wMat

def regularize(xMat):#regularize by columns
    inMat = xMat.copy()
    inMeans = mean(inMat,0)   #calc mean then subtract it off
    inVar = var(inMat,0)      #calc variance of Xi then divide by it
    inMat = (inMat - inMeans)/inVar
    return inMat

def stageWise(xArr,yArr,eps=0.01,numIt=100):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #can also regularize ys but will get smaller coef
    xMat = regularize(xMat)
    m,n=shape(xMat)
    ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
    for i in range(numIt):
        print ws.T
        lowestError = inf; 
        for j in range(n):
            for sign in [-1,1]:
                wsTest = ws.copy()
                wsTest[j] += eps*sign
                yTest = xMat*wsTest
                rssE = rssError(yMat.A,yTest.A)
                if rssE < lowestError:
                    lowestError = rssE
                    wsMax = wsTest
        ws = wsMax.copy()

from time import sleep
import json
import urllib2
def searchForSet(retX, retY, setNum, yr, numPce, origPrc):
    sleep(10)
    myAPIstr = 'AIzaSyD2cR2KFyx12hXu6PFU-wrWot3NXvko8vY'
    searchURL = 'https://www.googleapis.com/shopping/search/v1/public/products?key=%s&country=US&q=lego+%d&alt=json' % (myAPIstr, setNum)
    pg = urllib2.urlopen(searchURL)
    retDict = json.loads(pg.read())
    for i in range(len(retDict['items'])):
        try:
            currItem = retDict['items'][i]
            if currItem['product']['condition'] == 'new':
                newFlag = 1
            else: newFlag = 0
            listOfInv = currItem['product']['inventories']
            for item in listOfInv:
                sellingPrice = item['price']
                if  sellingPrice > origPrc * 0.5:
                    print "%d\t%d\t%d\t%f\t%f" % (yr,numPce,newFlag,origPrc, sellingPrice)
                    retX.append([yr, numPce, newFlag, origPrc])
                    retY.append(sellingPrice)
        except: print 'problem with item %d' % i

def setDataCollect(retX, retY):
    searchForSet(retX, retY, 8288, 2006, 800, 49.99)
    searchForSet(retX, retY, 10030, 2002, 3096, 269.99)
    searchForSet(retX, retY, 10179, 2007, 5195, 499.99)
    searchForSet(retX, retY, 10181, 2007, 3428, 199.99)
    searchForSet(retX, retY, 10189, 2008, 5922, 299.99)
    searchForSet(retX, retY, 10196, 2009, 3263, 249.99)

def crossValidation(xArr,yArr,numVal=10):
    m = len(yArr)                           
    indexList = range(m)
    errorMat = zeros((numVal,30))#create error mat 30columns numVal rows
    for i in range(numVal):
        trainX=[]; trainY=[]
        testX = []; testY = []
        random.shuffle(indexList)
        for j in range(m):#create training set based on first 90% of values in indexList
            if j < m*0.9: 
                trainX.append(xArr[indexList[j]])
                trainY.append(yArr[indexList[j]])
            else:
                testX.append(xArr[indexList[j]])
                testY.append(yArr[indexList[j]])
        wMat = ridgeTest(trainX,trainY)    #get 30 weight vectors from ridge
        for k in range(30):#loop over all of the ridge estimates
            matTestX = mat(testX); matTrainX=mat(trainX)
            meanTrain = mean(matTrainX,0)
            varTrain = var(matTrainX,0)
            matTestX = (matTestX-meanTrain)/varTrain #regularize test with training params
            yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)#test ridge results and store
            errorMat[i,k]=rssError(yEst.T.A,array(testY))
            #print errorMat[i,k]
    meanErrors = mean(errorMat,0)#calc avg performance of the different ridge weight vectors
    minMean = float(min(meanErrors))
    bestWeights = wMat[nonzero(meanErrors==minMean)]
    #can unregularize to get model
    #when we regularized we wrote Xreg = (x-meanX)/var(x)
    #we can now write in terms of x not Xreg: x*w/var(x) - meanX/var(x) +meanY
    xMat = mat(xArr); yMat=mat(yArr).T
    meanX = mean(xMat,0); varX = var(xMat,0)
    unReg = bestWeights/varX
    print "the best model from Ridge Regression is:\n",unReg
    print "with constant term: ",-1*sum(multiply(meanX,unReg)) + mean(yMat)

你可能感兴趣的:(python,机器学习,岭回归,L2正则化,L1正则化)