题意:给出n个火柴,要求用这些火柴组成尽可能大的,能被m整除的数。
思路:dp[i][j]表示组成长度为i,取模后为j这样的数所需要的最少的火柴数。递推出dp数组后,枚举最终数的位数,也就是要尽可能用位数多的。枚举最高位的数字,如果拼出这个数字后,剩下的火柴可以满足要求,那么就递归去构造。
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<stack> #include<set> #include<cmath> #include<vector> #define inf 0x3f3f3f3f #define Inf 0x3FFFFFFFFFFFFFFFLL #define eps 1e-8 #define pi acos(-1.0) using namespace std; typedef long long ll; const int c[10] = {6,2,5,5,4,5,6,3,7,6}; int dp[55][3010],pw[55],n,m; void findpath(int x,int mod,int sum) { if(x == 0) return ; for(int i = 9;i >= 0;--i) { int v = (mod + i*pw[x-1])%m; int y = (m - v)%m; if(c[i] + dp[x-1][y] <= sum) { printf("%d",i); findpath(x-1,v,sum - c[i]); return ; } } } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int tcase = 0; while(~scanf("%d",&n)) { if(n == 0) break; scanf("%d",&m); if(m == 0) { printf("Case %d: -1\n",++tcase); continue; } memset(dp,0x3f,sizeof(dp)); pw[0] = 1 % m; for(int i = 1;i < 55 ;++i) pw[i] = pw[i-1]*10%m; for(int i = 0;i <= 9;++i) dp[1][i%m] = min(dp[1][i%m],c[i]); dp[0][0] = 0; for(int i = 1;i < 54 ;++i) for(int j = 0;j < m;++j) { if(dp[i][j] == inf) continue; for(int k = 0;k <= 9;++k) { int v = (k*pw[i]%m + j)%m; dp[i+1][v] = min(dp[i+1][v],dp[i][j] + c[k]); } } printf("Case %d: ",++tcase); bool flag = false; for(int i = 50; i >= 1 && !flag; --i) { for(int j = 9;j >= 1 && !flag;--j) { int v = (m - j*pw[i-1]%m)%m; if(c[j] + dp[i-1][v] <= n) { printf("%d",j); findpath(i-1,j*pw[i-1]%m,n - c[j]); flag = true; break; } } } if(!flag) { if(n >= 6) printf("0"); else printf("-1"); } puts(""); } return 0; }