hdu 4441 Queue Sequence (伸展树splay+树状数组)

hdu 4441 Queue Sequence (伸展树splay)

题意:就是维护一个数列,总共三个操作。1 insert  x操作,在x位置插入一个数列中没出现过的,最小的正整数k,然后再找出k前面有多少个正数(不包括k),假设为j,那么就找到第j+1个负数,再其前面插入-k(其实题意是说找到第j个负数,然后在距离j尽量远的地方插入-k,转换下就好了)。2 remove x ,把数列中的x 和 -x删除掉 3 query x ,询问(x,-x)区间和。

解题思路:我用的伸展树+树状数组。。树状数组是用来维护未出现的最小的正整数k的。起先全赋为0,查询的时候就找到前缀和等于下标的最大的值,然后+1就是未出现的最小的k了,具体可以看get() 函数。然后伸展树就是维护区间和,另外还要维护一个cnt[]数组,cnt[i]表示 i 的子树下有多少个负数。用于insert操作时,找到k前面有多少个正数,以及第j+1个负数在哪里。这部分在search()函数里面。其他就没什么了。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define ll __int64
using namespace std ;

const int maxn = 255555 ;

ll sum[maxn] ;

int son[2][maxn] , fa[maxn] , size[maxn] ;
int val[maxn] , cnt[maxn] ;
int p1[maxn] , p2[maxn] ;
int tot ;

int c[maxn] ;

int lowbit ( int x ) { return x & ( -x ) ; }

void update ( int pos , int v ) {
    while ( pos < maxn ) {
        c[pos] += v ;
        pos += lowbit ( pos ) ;
    }
}

int get () {
    int i , ans = 0 , add = 0 ;
    for ( i = 17 ; i >= 0 ; i -- ) {
        int k = ans + ( 1 << i ) ;
        if ( k == add + c[k] ) {
            ans = k , add += c[k] ;
        }
    }
    return ans ;
}

int new_node ( int v ) {
    size[++tot] = 1 ;
    cnt[tot] = ( v < 0 ) ;
    fa[tot] = son[0][tot] = son[1][tot] = 0 ;
    sum[tot] = val[tot] = v ;
    return tot ;
}

void push_up ( int rt ) {
    int ls = son[0][rt] , rs = son[1][rt] ;
    sum[rt] = val[rt] , size[rt] = 1 , cnt[rt] = ( val[rt] < 0 ) ;
    if ( ls ) {
        sum[rt] += sum[ls] ;
        size[rt] += size[ls] ;
        cnt[rt] += cnt[ls] ;
        fa[ls] = rt ;
    }
    if ( rs ) {
        sum[rt] += sum[rs] ;
        size[rt] += size[rs] ;
        cnt[rt] += cnt[rs] ;
        fa[rs] = rt ;
    }
}

int build ( int l , int r ) {
    if ( l > r ) return 0 ;
    int mid = l + r >> 1 ;
    int temp = new_node ( -11111 ) ;
    son[0][temp] = build ( l , mid - 1 ) ;
    son[1][temp] = build ( mid + 1 , r ) ;
    push_up ( temp ) ;
    return temp ;
}

void rot ( int rt , int c ) {
    int y = fa[rt] , z = fa[y] ;
    son[!c][y] = son[c][rt] ;
    if ( son[c][rt] ) fa[son[c][rt]] = y ;
    fa[rt] = z ;
    if ( z ) {
        if ( y == son[0][z] ) son[0][z] = rt ;
        else son[1][z] = rt ;
    }
    son[c][rt] = y , fa[y] = rt ;
    push_up ( y ) ;
}

void splay ( int x , int to ) {
    while ( fa[x] != to ) {
        if ( fa[fa[x]] == to ) rot ( x , x == son[0][fa[x]] ) ;
        else {
            int y = fa[x] , z = fa[y] ;
            if ( x == son[0][y] ) {
                if ( y == son[0][z] ) rot ( y , 1 ) , rot ( x , 1 ) ;
                else rot ( x , 1 ) , rot ( x , 0 ) ;
            }
            else {
                if ( y == son[1][z] ) rot ( y , 0 ) , rot ( x , 0 ) ;
                else rot ( x , 0 ) , rot ( x , 1 ) ;
            }
        }
    }
    push_up ( x ) ;
}

int find ( int key , int rt ) {
    int cnt = 0 ;
    if ( son[0][rt] ) cnt = size[son[0][rt]] ;
    if ( cnt + 1 == key ) return rt ;
    if ( cnt + 1 > key ) return find ( key , son[0][rt] ) ;
    return find ( key - cnt - 1 , son[1][rt] ) ;
}

int search ( int key , int rt ) {
    int c = ( val[rt] < 0 ) ;
    if ( son[0][rt] ) c += cnt[son[0][rt]] ;
    if ( c == key ) {
        if ( val[rt] < 0 )
            return rt ;
        else return search ( key , son[0][rt] ) ;
    }
    if ( c > key ) return search ( key , son[0][rt] ) ;
    return search ( key - c , son[1][rt] ) ;
}

ll query ( int l , int r , int &rt ) {
    splay ( l , 0 ) ;
    rt = l ;
    splay ( r , rt ) ;
    if ( !son[0][r] ) return 0 ;
    else return sum[son[0][r]] ;
}

int insert ( int l , int v , int rt ) {
    int temp = find ( l , rt ) ;
    splay ( temp , 0 ) ;
    rt = temp ;
    temp = find ( l + 1 , rt ) ;
    splay ( temp , rt ) ;
    int p = new_node ( v ) ;
    fa[p] = temp ;
    son[0][temp] = p ;
    push_up ( temp ) ;
    push_up ( rt ) ;
    return rt ;
}

int del ( int l , int r , int rt ) {
    int temp = find ( l - 1 , rt ) ;
    splay ( temp , 0 ) ;
    rt = temp ;
    temp = find ( r + 1 , rt ) ;
    splay ( temp , rt ) ;
    son[0][temp] = 0 ;
    push_up ( temp ) ;
    push_up ( rt ) ;
    return rt ;
}

void print ( int rt ) {
    if ( son[0][rt] ) print ( son[0][rt] ) ;
    printf ( "%d " , val[rt] ) ;
    if ( son[1][rt] ) print ( son[1][rt] ) ;
}

int main () {
    int m , ca = 0 ;
    while ( scanf ( "%d" , &m ) != EOF ) {
        tot = 0 ;
        memset ( c , 0 , sizeof (c ) ) ;
        int rt = build ( 0 , 1 ) ;
        int x ;
        char s[222] ;
        printf ( "Case #%d:\n" , ++ ca ) ;
        while ( m -- ) {
            scanf ( "%s" , s ) ;
            scanf ( "%d" , &x ) ;
            if ( s[0] == 'i' ) {
                int k = get () + 1 ;
                rt = insert ( x + 1 , k , rt ) ;
                int temp = son[0][son[1][rt]] ;
                p1[k] = temp ;
                splay ( temp , 0 ) ;
                rt = temp ;
                int fuck = x + 1 - ( son[0][rt] ? cnt[son[0][rt]] : 0 ) ;
                temp = search ( fuck + 2 , rt ) ;
                splay ( temp , 0 ) ;
                rt = temp ;
                rt = insert ( size[son[0][rt]] , -k , rt ) ;
                temp = son[0][son[1][rt]] ;
                p2[k] = temp ;
                update ( k , 1 ) ;
            }
            else if ( s[0] == 'r' ) {
                int a = p1[x] , b = p2[x] ;
                update ( x , -1 ) ;
                splay ( a , 0 ) ;
                rt = a ;
                x = size[son[0][rt]] + 1 ;
                rt = del ( x , x , rt ) ;
                splay ( b , 0 ) ;
                rt = b ;
                x = size[son[0][rt]] + 1 ;
                rt = del ( x , x , rt ) ;
            }
            else if ( s[0] == 'q' ) {
                int l = p1[x] , r = p2[x] ;
                printf ( "%I64d\n" , query ( l , r , rt ) ) ;
            }
        }
    }
    return 0 ;
}
/*
100000
i 0
i 2
i 0
*/


你可能感兴趣的:(tree,splay,伸展树)