这道题还是比较有考虑的价值的
求:判断是否有最小生成树,次小生成树,如果有次小生成树,则输出次小生成树的总权值
要注意的是,点和点之间是有重边的,要求次小生成树,就一定要保留所有重边
考虑到即要判断图是不是连通的,又要保存重边,所以Kruskal是首选,prim算法或许有解,但是本人实在是没有想出来怎么样比Kruskal能更加简单,如果大牛经过,求指点
次小生成树一定是最小生成树减一条边,再加一条边,枚举掉最小生成树中的边,一次求少一条边的图的最小生成树即可
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 110; const int M = 220; const int INF = 1000000000; int n, m, T, ans1, ans2, ise[N], f[N]; struct edge { int u, v, cost; }e[M]; bool cmp( edge a, edge b ) { return a.cost < b.cost; } int find ( int x ) { return f[x] == x ? x: f[x] = find(f[x]); } int Kru() { int ans = 0, num = 0, id = 0; for ( int i = 1; i <= n; ++i ) f[i] = i; for ( int i = 0; i < m; ++i ) { int x = e[i].u; int y = e[i].v; int a = find(x); int b = find(y); if ( a != b ) ise[id++] = i, f[a] = b, ans += e[i].cost; } for ( int i = 1; i <= n; ++i ) if ( i == find(i) ) num++; if ( num > 1 ) return INF; else return ans; } int Kru_1( int del ) { int ans = 0, num = 0; for ( int i = 1; i <= n; ++i ) f[i] = i; for ( int i = 0; i < m; ++i ) { if ( i == del ) continue; int x = e[i].u; int y = e[i].v; int a = find(x); int b = find(y); if ( a != b ) f[a] = b, ans += e[i].cost; } for ( int i = 1; i <= n; ++i ) if ( i == find(i) ) num++; if ( num > 1 ) return INF; else return ans; } int main() { int idx = 1; scanf("%d", &T); while ( T-- ) { scanf("%d%d", &n, &m); for ( int i = 0; i < m; ++i ) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].cost); sort( e, e+m, cmp ); ans1 = Kru(), ans2 = INF; printf("Case #%d : ", idx++); if ( ans1 == INF ) { printf("No way\n"); continue; } for ( int i = 0; i < n-1; ++i ) { int x = ise[i]; ans2 = min( ans2, Kru_1(x) ); } if ( ans2 == INF ) printf("No second way\n"); else printf("%d\n", ans2); } }