http://www.codeforces.com/contest/658/problem/D
Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.
He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:
Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:
ai is integer for every i;
|ai| ≤ k for every i;
an ≠ 0.
Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.
The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.
The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.
Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.
3 1000000000
10 -9 -3 5
3
给你一个多项式,然后告诉你P(2)!=0
你可以改变其中某一项的系数,使得P(2)=0,问你有多少种改变方法
先正面扫一遍,把所有的系数都往后传,这样除了最后一个数的系数以外,其他的系数都是+-1,0这种
然后我们再倒着扫一遍,判断这个数的系数应该是多少就好了。
对了,在从后面往前面走的过程中,如果某个位置的数大于了某个值的时候,就可以直接break了
因为会在不断的乘以2,不可能产生答案了。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+6;
long long a[maxn];
long long c[maxn];
int n,flag;
long long k;
int main()
{
scanf("%d%lld",&n,&k);
for(int i=0;i<=n;i++)
{
scanf("%lld",&a[i]);
c[i]=a[i];
}
for(int i=0;i<n;i++)
{
a[i+1]+=a[i]/2LL;
a[i]%=2LL;
}
for(int i=0;i<=n;i++)
if(a[i])
{
flag = i;
break;
}
long long sum = 0;
long long ans = 0;
for(int i=n;i>=0;i--)
{
sum = sum * 2LL + a[i];
if(abs(sum)>1ll*1e9*1e7)break;
if(i<=flag)
{
long long p = c[i]-sum;
if(abs(p)<=k)
{
if(i==n&&p==0)continue;
ans++;
}
}
}
cout<<ans<<endl;
}