本文更新地址:http://blog.csdn.net/tanzuozhev/article/details/51108040
本文在 http://www.cookbook-r.com/Graphs/Scatterplots_(ggplot2)/ 的基础上加入了自己的理解
图例用来解释图中的各种含义,比如颜色,形状,大小等等, 在ggplot2中aes
中的参数(x, y 除外)基本都会生成图例来解释图形, 比如 fill, colour, linetype, shape.
library(ggplot2)
bp <- ggplot(data=PlantGrowth, aes(x=group, y=weight, fill=group)) + geom_boxplot()
bp
Use guides(fill=FALSE), replacing fill with the desired aesthetic. 使用 guides(fill=FALSE)
移除由ase
中 匹配的fill
生成的图例, 也可以使用theme
You can also remove all the legends in a graph, using theme.
bp + guides(fill=FALSE)
# 也可以这也
bp + scale_fill_discrete(guide=FALSE)
# 移除所有图例
bp + theme(legend.position="none")
改变图例的顺序为 trt1, ctrl, trt2:
bp + scale_fill_discrete(breaks=c("trt1","ctrl","trt2"))
根据不同的分类,可以使用 scale_fill_manual
, scale_colour_hue
,scale_colour_manual
, scale_shape_discrete
, scale_linetype_discrete
等等.
# 多种方法
bp + guides(fill = guide_legend(reverse=TRUE))
# 也可以
bp + scale_fill_discrete(guide = guide_legend(reverse=TRUE))
# 还可以这也
bp + scale_fill_discrete(breaks = rev(levels(PlantGrowth$group)))
# Remove title for fill legend
bp + guides(fill=guide_legend(title=NULL))
# Remove title for all legends
bp + theme(legend.title=element_blank())
两种方法一种是直接修改标签, 另一种是修改data.frame
Using scales
图例可以根据 fill, colour, linetype, shape 等绘制, 我们以 fill 为例, scale_fill_xxx
, xxx
表示处理数据的一种方法, 可以是 hue
(对颜色的定量操作), continuous
(连续型数据处理), discete
(离散型数据处理)等等.
# 设置图例名称
bp + scale_fill_discrete(name="Experimental\nCondition")
# 设置图例的名称, 重新定义新的标签名称
bp + scale_fill_discrete(name="Experimental\nCondition",
breaks=c("ctrl", "trt1", "trt2"),
labels=c("Control", "Treatment 1", "Treatment 2"))
# 自定义fill的颜色
bp + scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"),
name="Experimental\nCondition",
breaks=c("ctrl", "trt1", "trt2"),
labels=c("Control", "Treatment 1", "Treatment 2"))
注意这里并不能修改 x轴 的标签,如果需要改变x轴的标签,可以参照http://blog.csdn.net/tanzuozhev/article/details/51107583
# A different data set
df1 <- data.frame(
sex = factor(c("Female","Female","Male","Male")),
time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(13.53, 16.81, 16.24, 17.42)
)
# A basic graph
lp <- ggplot(data=df1, aes(x=time, y=total_bill, group=sex, shape=sex)) + geom_line() + geom_point()
lp
# 修改图例
lp + scale_shape_discrete(name ="Payer",
breaks=c("Female", "Male"),
labels=c("Woman", "Man"))
If you use both colour and shape, they both need to be given scale specifications. Otherwise there will be two two separate legends. 如果同时使用 color
和shape
,那么必须都进行scale_xx_xxx的定义,否则color
和shape
的图例就会合并到一起, 如果 scale_xx_xxx
中的name
相同,那么他们也会合并到一起.
# Specify colour and shape
lp1 <- ggplot(data=df1, aes(x=time, y=total_bill, group=sex, shape=sex, colour=sex)) + geom_line() + geom_point()
lp1
# Here's what happens if you just specify colour
lp1 + scale_colour_discrete(name ="Payer",
breaks=c("Female", "Male"),
labels=c("Woman", "Man"))
# Specify both colour and shape
lp1 + scale_colour_discrete(name ="Payer",
breaks=c("Female", "Male"),
labels=c("Woman", "Man")) +
scale_shape_discrete(name ="Payer",
breaks=c("Female", "Male"),
labels=c("Woman", "Man"))