题目大意:给定一棵树,然后询问连个节点间路径上的权值的第K小的权值大小
题目分析:和普通的第K大的可持久化线段树差距不大,但是要写个LCA可以发现 Tree(a)+Tree(b)−Tree(LCA)−LCA(fa[LCA]) 就是两个节点之间的线段树了,然后按照普通的可持久化线段树搞一搞就好了
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1e5+100;
struct node{
int ch[2];
int sum;
}pool[MAXN*21];
int roots[MAXN+10], q[MAXN+10], p[MAXN+10], tot, nlen;
struct Ed{
int u, v;
Ed *next;
}Edges[MAXN*2+10], *ecnt=Edges, *adj[MAXN+10];
int Fa[MAXN+10][20], Dep[MAXN+10];
void addedge(int u, int v){
++ecnt;
ecnt->v = v;
ecnt->next = adj[u];
adj[u] = ecnt;
}
void Insert(int &u, int l, int r, int v){
++tot;
pool[tot] = pool[u];
u = tot;
pool[u].sum ++;
if(l == r) return ;
int mid = (l + r) >> 1;
if(v <= mid) Insert(pool[u].ch[0], l, mid, v);
else Insert(pool[u].ch[1], mid+1, r, v);
}
void dfs(int u, int fa){
Fa[u][0] = fa;
for(int i=0;i<18;i++)
Fa[u][i+1] = Fa[Fa[u][i]][i];
Dep[u] = Dep[fa] + 1;
roots[u] = roots[fa];
Insert(roots[u], 1, nlen, q[u]);
for(Ed *p=adj[u];p;p=p->next){
if(p->v == fa) continue;
dfs(p->v, u);
}
}
int LCA(int a, int b){
if(Dep[a] > Dep[b]) swap(a, b);
for(int k=18;k>=0;k--)
if(Dep[a] <= Dep[Fa[b][k]])
b = Fa[b][k];
if(a == b) return a;
for(int k=18;k>=0;k--){
if(Fa[a][k] != Fa[b][k] && Fa[a][k] != -1){
a = Fa[a][k];
b = Fa[b][k];
}
}
return Fa[a][0];
}
int Query(int lroot, int rroot, int lcroot, int lcfroot, int l, int r, int k){
if(l >= r) return l;
int mid = (l + r) >> 1;
int cz = pool[pool[lroot].ch[0]].sum;
cz += pool[pool[rroot].ch[0]].sum;
cz -= pool[pool[lcroot].ch[0]].sum;
cz -= pool[pool[lcfroot].ch[0]].sum;
if(k <= cz)
return Query(pool[lroot].ch[0], pool[rroot].ch[0], pool[lcroot].ch[0], pool[lcfroot].ch[0], l, mid, k);
return Query(pool[lroot].ch[1], pool[rroot].ch[1], pool[lcroot].ch[1], pool[lcfroot].ch[1], mid+1, r, k-cz);
}
int main(){
memset(Fa,-1, sizeof Fa);
int n, m, a, b, k;
scanf("%d%d", &n, &m);
for(int i=1;i<=n;i++){
scanf("%d", &q[i]);
p[i] = q[i];
}
sort(p+1, p+1+n);
nlen = unique(p+1, p+1+n) - (p+1);
for(int i=1;i<=n;i++)
q[i] = lower_bound(p+1, p+1+nlen, q[i]) - p;
for(int i=2;i<=n;i++){
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
dfs(1, 0);
for(int i=1;i<=m;i++){
scanf("%d%d%d", &a, &b, &k);
int lc = LCA(a, b);
printf("%d\n", p[Query(roots[a], roots[b], roots[lc], roots[Fa[lc][0]], 1, nlen, k)]);
}
return 0;
}
/*
2 1
1 2
1 2
1 2 2
*/