题目链接:uva 10247 - Complete Tree Labeling
题目大意:给出k和d,表示有一个k叉d层的完全k叉数,然后它的节点数为n个,用1~n给这棵树的节点标号,要求说任意一个节点的值不能大于它的任意一个子节点,每个数只能用一次。问优多少种标记的方法。
解题思路:一般dp都是有dp[i - 1]推导出dp[i]的,这题也不例外,只不过思路和往常不太一样。节点数node[i][j]表示说完全i叉数j层树含有几个节点,node[i][j] = node[i][j - 1] * i + 1,然后ans[i][j] 即为i叉树的标记方式数。然后对于每个ans[i][j]可以看成是i个ans[i][j - 1](子树),根节点肯定是1.然后对于每颗子树需要m = node[i][j - 1]个数来标记节点(数为有序的,并且不相等),就要ans[i][j] = C(node[i][j] - 1, m) * C(node[i][j] - 1 - m, m) * ....* C(m, m) * (ans[i][j - 1] ^ i).
#include <stdio.h> #include <string.h> #include <math.h> #define max(a,b) (a)>(b)?(a):(b) #define min(a,b) (a)<(b)?(a):(b) const int MAXSIZE = 10000; struct bign { int s[MAXSIZE]; bign () {memset(s, 0, sizeof(s));} bign (int number) {*this = number;} bign (const char* number) {*this = number;} void put(); bign mul(int d); void del(); void init() { memset(s, 0, sizeof(s)); } bign operator = (char *num); bign operator = (int num); bool operator < (const bign& b) const; bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) const { return !(b < *this); } bool operator >= (const bign& b) const { return !(*this < b); } bool operator != (const bign& b) const { return b < *this || *this < b;} bool operator == (const bign& b) const { return !(b != *this); } bign operator + (const bign& c); bign operator * (const bign& c); bign operator - (const bign& c); int operator / (const bign& c); bign operator / (int k); bign operator % (const bign &c); int operator % (int k); void operator ++ (); bool operator -- (); }; const int N = 22; int node[N][N]; bign ans[N][N]; bign C(int x, int y) { y = min(y, x - y); bign c = 1, d; for (int i = 0; i < y; i++) { d = x - i; c = c * d; c = c / (i + 1); } return c; } void solve(int x, int y) { ans[x][y] = 1; int m = node[x][y - 1]; for (int i = 0; i < x; i++) { ans[x][y] = ans[x][y] * C(node[x][y] - i * m - 1, m) * ans[x][y - 1]; } } void init() { for (int i = 1; i <= 21; i++) ans[1][i] = 1; for (int i = 2; i <= 21; i++) { int top = 21 / i; ans[i][0] = node[i][0] = 1; node[i][0] = 1; for (int j = 1; j <= top; j++) { node[i][j] = node[i][j - 1] * i + 1; solve(i, j); } } } int main () { init(); int k, d; while (scanf("%d%d", &k, &d) == 2) { ans[k][d].put(); printf("\n"); } /* int a, b; while (scanf("%d%d", &a, &b) == 2) { bign t = C(a, b); t.put(); printf("!\n"); } */ return 0; } bign bign::operator = (char *num) { init(); s[0] = strlen(num); for (int i = 1; i <= s[0]; i++) s[i] = num[s[0] - i] - '0'; return *this; } bign bign::operator = (int num) { char str[MAXSIZE]; sprintf(str, "%d", num); return *this = str; } bool bign::operator < (const bign& b) const { if (s[0] != b.s[0]) return s[0] < b.s[0]; for (int i = s[0]; i; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bign bign::operator + (const bign& c) { int sum = 0; bign ans; ans.s[0] = max(s[0], c.s[0]); for (int i = 1; i <= ans.s[0]; i++) { if (i <= s[0]) sum += s[i]; if (i <= c.s[0]) sum += c.s[i]; ans.s[i] = sum % 10; sum /= 10; } return ans; } bign bign::operator * (const bign& c) { bign ans; ans.s[0] = 0; for (int i = 1; i <= c.s[0]; i++){ int g = 0; for (int j = 1; j <= s[0]; j++){ int x = s[j] * c.s[i] + g + ans.s[i + j - 1]; ans.s[i + j - 1] = x % 10; g = x / 10; } int t = i + s[0] - 1; while (g){ ++t; g += ans.s[t]; ans.s[t] = g % 10; g = g / 10; } ans.s[0] = max(ans.s[0], t); } ans.del(); return ans; } bign bign::operator - (const bign& c) { bign ans = *this; for (int i = 1; i <= c.s[0]; i++) { if (ans.s[i] < c.s[i]) { ans.s[i] += 10; ans.s[i + 1]--;; } ans.s[i] -= c.s[i]; } for (int i = 1; i <= ans.s[0]; i++) { if (ans.s[i] < 0) { ans.s[i] += 10; ans.s[i + 1]--; } } ans.del(); return ans; } int bign::operator / (const bign& c) { int ans = 0; bign d = *this; while (d >= c) { d = d - c; ans++; } return ans; } bign bign::operator / (int k) { bign ans; ans.s[0] = s[0]; int num = 0; for (int i = s[0]; i; i--) { num = num * 10 + s[i]; ans.s[i] = num / k; num = num % k; } ans.del(); return ans; } int bign:: operator % (int k){ int sum = 0; for (int i = s[0]; i; i--){ sum = sum * 10 + s[i]; sum = sum % k; } return sum; } bign bign::operator % (const bign &c) { bign now = *this; while (now >= c) { now = now - c; now.del(); } return now; } void bign::operator ++ () { s[1]++; for (int i = 1; s[i] == 10; i++) { s[i] = 0; s[i + 1]++; s[0] = max(s[0], i + 1); } } bool bign::operator -- () { del(); if (s[0] == 1 && s[1] == 0) return false; int i; for (i = 1; s[i] == 0; i++) s[i] = 9; s[i]--; del(); return true; } void bign::put() { if (s[0] == 0) printf("0"); else for (int i = s[0]; i; i--) printf("%d", s[i]); } bign bign::mul(int d) { s[0] += d; for (int i = s[0]; i > d; i--) s[i] = s[i - d]; for (int i = d; i; i--) s[i] = 0; return *this; } void bign::del() { while (s[s[0]] == 0) { s[0]--; if (s[0] == 0) break; } }