K-SVD算法

K-SVD算法的基本思想:


Y为训练样本,D为字典,X为稀疏系数。一般分为Sparse CodingDictionaryUpdate两个步骤:

1Sparse Coding:固定字典D通过下面的目标函数采用一种追踪算法找到样本的最佳稀疏矩阵。

2Dictionary Update:按列更新字典,一句可使MSE减少的准则,通过SVD(奇异值分解)循序的更新每一列和该列对应的稀疏矩阵的值。


EK为字典的第k列的残差,物理意义:没有dk时表示的误差,也就是字典的第k列在表示Y的过程中究竟起到了多大的作用。

根据上面的EK的解释可以知道,我们的目的就是找到一个合适的dk来最大化减小EK

为了得到dk就需要对EK 进行SVD(奇异值分解),Ek=UΔVT令矩阵U的第一列作为字典第K列更新后的dk,同时令Δ(1,1)乘以V的第一列作为更新后的稀疏系数。


下面是一个简单的利用KSVD和OMP算法的演示代码

代码流程:

Step1:读入的一张lena图片img

Step2: 随机生成一个测量矩阵phi

Step3:y=phi*img得到观测值

Step4:利用[Dictionary,]=KSVD[img,para]得到dictionary

Step5:利用A=OMP[phi*Dictionary,y,L]得到稀疏系数矩阵

Step6:img_rec=Dictionary*A得到重建的图像。


Demo_Code_1.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the K-SVD basis is selected as the sparse representation dictionary
% the OMP  algorithm is used to recover the image
% Author: zhang ben, [email protected]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%***************************** read in the image **************************
img=imread('lena.bmp');     % read in the image "lena.bmp"
img=double(img);
[N,n]=size(img); 
img0 = img;  % keep an original copy of the input signal
%****************form the measurement matrix and Dictionary ***************
%form the measurement matrix Phi
Phi=randn(N,n);   
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[N,1]); % normalize each column
%fix the parameters
param.L =20;   % number of elements in each linear combination.
param.K =150; %number of dictionary elements
param.numIteration = 50; % number of iteration to execute the K-SVD algorithm.
param.errorFlag = 0; % decompose signals until a certain error is reached. 
                     %do not use fix number of coefficients. 
%param.errorGoal = sigma;
param.preserveDCAtom = 0;
param.InitializationMethod ='DataElements';%initialization by the signals themselves
param.displayProgress = 1; % progress information is displyed.
[Dictionary,output]= KSVD(img,param);%Dictionary is N*param.K 
%************************ projection **************************************
y=Phi*img;          % treat each column as a independent signal
y0=y;  % keep an original copy of the measurements
%********************* recover using OMP *********************************
D=Phi*Dictionary;
A=OMP(D,y,20);
imgr=Dictionary*A;  
%***********************  show the results  ******************************** 
figure(1)
subplot(2,2,1),imagesc(img0),title('original image')
subplot(2,2,2),imagesc(y0),title('measurement image')
subplot(2,2,3),imagesc(Dictionary),title('Dictionary')
psnr=20*log10(255/sqrt(mean((img(:)-imgr(:)).^2)));
subplot(2,2,4),imagesc(imgr),title(strcat('recover image (',num2str(psnr),'dB)'))
disp('over')

OMP.m(这时被人写好的代码)

unction [A]=OMP(D,X,L); 
%=============================================
% Sparse coding of a group of signals based on a given 
% dictionary and specified number of atoms to use. 
% input arguments: 
%       D - the dictionary (its columns MUST be normalized).
%       X - the signals to represent
%       L - the max. number of coefficients for each signal.
% output arguments: 
%       A - sparse coefficient matrix.
%=============================================
[n,K]=size(D);
[n,P]=size(X);
for k=1:1:P,
    a=[];
    x=X(:,k);%令向量x等于矩阵X的第K列的元素长度为n*1
    residual=x;%n*1
    indx=zeros(L,1);%L*1的0矩阵
    for j=1:1:L,
        proj=D'*residual;%K*n n*1 变成K*1
        [maxVal,pos]=max(abs(proj));%  最大投影系数对应的位置
        pos=pos(1);
        indx(j)=pos; 
        a=pinv(D(:,indx(1:j)))*x;
        residual=x-D(:,indx(1:j))*a;
        if sum(residual.^2) < 1e-6
            break;
        end
    end;
    temp=zeros(K,1);
    temp(indx(1:j))=a;
    A(:,k)=sparse(temp);%A为返回为K*P的矩阵
end;
return;

KSVD算法实现代码:

function [Dictionary,output] = KSVD(...
    Data,... % an nXN matrix that contins N signals (Y), each of dimension n.
    param)
% =========================================================================
%                          K-SVD algorithm
% =========================================================================
% The K-SVD algorithm finds a dictionary for linear representation of
% signals. Given a set of signals, it searches for the best dictionary that
% can sparsely represent each signal. Detailed discussion on the algorithm
% and possible applications can be found in "The K-SVD: An Algorithm for 
% Designing of Overcomplete Dictionaries for Sparse Representation", written
% by M. Aharon, M. Elad, and A.M. Bruckstein and appeared in the IEEE Trans. 
% On Signal Processing, Vol. 54, no. 11, pp. 4311-4322, November 2006. 
% =========================================================================
% INPUT ARGUMENTS:
% Data                         an nXN matrix that contins N signals (Y), each of dimension n. 
% param                        structure that includes all required
%                                 parameters for the K-SVD execution.
%                                 Required fields are:
%    K, ...                    the number of dictionary elements to train
%    numIteration,...          number of iterations to perform.
%    errorFlag...              if =0, a fix number of coefficients is
%                                 used for representation of each signal. If so, param.L must be
%                                 specified as the number of representing atom. if =1, arbitrary number
%                                 of atoms represent each signal, until a specific representation error
%                                 is reached. If so, param.errorGoal must be specified as the allowed
%                                 error.
%    preserveDCAtom...         if =1 then the first atom in the dictionary
%                                 is set to be constant, and does not ever change. This
%                                 might be useful for working with natural
%                                 images (in this case, only param.K-1
%                                 atoms are trained).
%    (optional, see errorFlag) L,...                 % maximum coefficients to use in OMP coefficient calculations.
%    (optional, see errorFlag) errorGoal, ...        % allowed representation error in representing each signal.
%    InitializationMethod,...  mehtod to initialize the dictionary, can
%                                 be one of the following arguments: 
%                                 * 'DataElements' (initialization by the signals themselves), or: 
%                                 * 'GivenMatrix' (initialization by a given matrix param.initialDictionary).
%    (optional, see InitializationMethod) initialDictionary,...      % if the initialization method 
%                                 is 'GivenMatrix', this is the matrix that will be used.
%    (optional) TrueDictionary, ...        % if specified, in each
%                                 iteration the difference between this dictionary and the trained one
%                                 is measured and displayed.
%    displayProgress, ...      if =1 progress information is displyed. If param.errorFlag==0, 
%                                 the average repersentation error (RMSE) is displayed, while if 
%                                 param.errorFlag==1, the average number of required coefficients for 
%                                 representation of each signal is displayed.
% =========================================================================
% OUTPUT ARGUMENTS:
%  Dictionary                  The extracted dictionary of size nX(param.K).
%  output                      Struct that contains information about the current run. It may include the following fields:
%    CoefMatrix                  The final coefficients matrix (it should hold that Data equals approximately Dictionary*output.CoefMatrix.
%    ratio                       If the true dictionary was defined (in
%                                synthetic experiments), this parameter holds a vector of length
%                                param.numIteration that includes the detection ratios in each
%                                iteration).
%    totalerr                    The total representation error after each
%                                iteration (defined only if
%                                param.displayProgress=1 and
%                                param.errorFlag = 0)
%    numCoef                     A vector of length param.numIteration that
%                                include the average number of coefficients required for representation
%                                of each signal (in each iteration) (defined only if
%                                param.displayProgress=1 and
%                                param.errorFlag = 1)
% =========================================================================

if (~isfield(param,'displayProgress'))
    param.displayProgress = 0;
end
totalerr(1) = 99999;
if (isfield(param,'errorFlag')==0)
    param.errorFlag = 0;
end

if (isfield(param,'TrueDictionary'))
    displayErrorWithTrueDictionary = 1;
    ErrorBetweenDictionaries = zeros(param.numIteration+1,1); %产生零矩阵
    ratio = zeros(param.numIteration+1,1);
else
    displayErrorWithTrueDictionary = 0;
	ratio = 0;
end
if (param.preserveDCAtom>0)
    FixedDictionaryElement(1:size(Data,1),1) = 1/sqrt(size(Data,1));
else
    FixedDictionaryElement = [];
end
% coefficient calculation method is OMP with fixed number of coefficients

if (size(Data,2) < param.K)
    disp('Size of data is smaller than the dictionary size. Trivial solution...');
    Dictionary = Data(:,1:size(Data,2));
    return;
elseif (strcmp(param.InitializationMethod,'DataElements'))
    Dictionary(:,1:param.K-param.preserveDCAtom) = Data(:,1:param.K-param.preserveDCAtom);
elseif (strcmp(param.InitializationMethod,'GivenMatrix'))
    Dictionary(:,1:param.K-param.preserveDCAtom) = param.initialDictionary(:,1:param.K-param.preserveDCAtom);
end
% reduce the components in Dictionary that are spanned by the fixed
% elements
if (param.preserveDCAtom)
    tmpMat = FixedDictionaryElement \ Dictionary;
    Dictionary = Dictionary - FixedDictionaryElement*tmpMat;
end
%normalize the dictionary.
Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary)));
Dictionary = Dictionary.*repmat(sign(Dictionary(1,:)),size(Dictionary,1),1); % multiply in the sign of the first element.
totalErr = zeros(1,param.numIteration);

% the K-SVD algorithm starts here.

for iterNum = 1:param.numIteration
    % find the coefficients
    if (param.errorFlag==0)
        %CoefMatrix = mexOMPIterative2(Data, [FixedDictionaryElement,Dictionary],param.L);
        CoefMatrix = OMP([FixedDictionaryElement,Dictionary],Data, param.L);
    else 
        %CoefMatrix = mexOMPerrIterative(Data, [FixedDictionaryElement,Dictionary],param.errorGoal);
        CoefMatrix = OMPerr([FixedDictionaryElement,Dictionary],Data, param.errorGoal);
        param.L = 1;
    end
    
    replacedVectorCounter = 0;
	rPerm = randperm(size(Dictionary,2));
    for j = rPerm
        [betterDictionaryElement,CoefMatrix,addedNewVector] = I_findBetterDictionaryElement(Data,...
            [FixedDictionaryElement,Dictionary],j+size(FixedDictionaryElement,2),...
            CoefMatrix ,param.L);
        Dictionary(:,j) = betterDictionaryElement;
        if (param.preserveDCAtom)
            tmpCoef = FixedDictionaryElement\betterDictionaryElement;
            Dictionary(:,j) = betterDictionaryElement - FixedDictionaryElement*tmpCoef;
            Dictionary(:,j) = Dictionary(:,j)./sqrt(Dictionary(:,j)'*Dictionary(:,j));
        end
        replacedVectorCounter = replacedVectorCounter+addedNewVector;
    end

    if (iterNum>1 & param.displayProgress)
        if (param.errorFlag==0)
            output.totalerr(iterNum-1) = sqrt(sum(sum((Data-[FixedDictionaryElement,Dictionary]*CoefMatrix).^2))/prod(size(Data)));
            disp(['Iteration   ',num2str(iterNum),'   Total error is: ',num2str(output.totalerr(iterNum-1))]);
        else
            output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2);
            disp(['Iteration   ',num2str(iterNum),'   Average number of coefficients: ',num2str(output.numCoef(iterNum-1))]);
        end
    end
    if (displayErrorWithTrueDictionary ) 
        [ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] = I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary);
        disp(strcat(['Iteration  ', num2str(iterNum),' ratio of restored elements: ',num2str(ratio(iterNum+1))]));
        output.ratio = ratio;
    end
    Dictionary = I_clearDictionary(Dictionary,CoefMatrix(size(FixedDictionaryElement,2)+1:end,:),Data);
    
    if (isfield(param,'waitBarHandle'))
        waitbar(iterNum/param.counterForWaitBar);
    end
end

output.CoefMatrix = CoefMatrix;
Dictionary = [FixedDictionaryElement,Dictionary];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  findBetterDictionaryElement
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [betterDictionaryElement,CoefMatrix,NewVectorAdded] = I_findBetterDictionaryElement(Data,Dictionary,j,CoefMatrix,numCoefUsed)
if (length(who('numCoefUsed'))==0)
    numCoefUsed = 1;
end
relevantDataIndices = find(CoefMatrix(j,:)); % the data indices that uses the j'th dictionary element.
if (length(relevantDataIndices)<1) %(length(relevantDataIndices)==0)
    ErrorMat = Data-Dictionary*CoefMatrix;
    ErrorNormVec = sum(ErrorMat.^2);
    [d,i] = max(ErrorNormVec);
    betterDictionaryElement = Data(:,i);%ErrorMat(:,i); %
    betterDictionaryElement = betterDictionaryElement./sqrt(betterDictionaryElement'*betterDictionaryElement);
    betterDictionaryElement = betterDictionaryElement.*sign(betterDictionaryElement(1));
    CoefMatrix(j,:) = 0;
    NewVectorAdded = 1;
    return;
end

NewVectorAdded = 0;
tmpCoefMatrix = CoefMatrix(:,relevantDataIndices); 
tmpCoefMatrix(j,:) = 0;% the coeffitients of the element we now improve are not relevant.
errors =(Data(:,relevantDataIndices) - Dictionary*tmpCoefMatrix); % vector of errors that we want to minimize with the new element
% % the better dictionary element and the values of beta are found using svd.
% % This is because we would like to minimize || errors - beta*element ||_F^2. 
% % that is, to approximate the matrix 'errors' with a one-rank matrix. This
% % is done using the largest singular value.
[betterDictionaryElement,singularValue,betaVector] = svds(errors,1);
CoefMatrix(j,relevantDataIndices) = singularValue*betaVector';% *signOfFirstElem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  findDistanseBetweenDictionaries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new)
% first, all the column in oiginal starts with positive values.
catchCounter = 0;
totalDistances = 0;
for i = 1:size(new,2)
    new(:,i) = sign(new(1,i))*new(:,i);
end
for i = 1:size(original,2)
    d = sign(original(1,i))*original(:,i);
    distances =sum ( (new-repmat(d,1,size(new,2))).^2);
    [minValue,index] = min(distances);
    errorOfElement = 1-abs(new(:,index)'*d);
    totalDistances = totalDistances+errorOfElement;
    catchCounter = catchCounter+(errorOfElement<0.01);
end
ratio = 100*catchCounter/size(original,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  I_clearDictionary
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data)
T2 = 0.99;
T1 = 3;
K=size(Dictionary,2);
Er=sum((Data-Dictionary*CoefMatrix).^2,1); % remove identical atoms
G=Dictionary'*Dictionary; G = G-diag(diag(G));
for jj=1:1:K,
    if max(G(jj,:))>T2 | length(find(abs(CoefMatrix(jj,:))>1e-7))<=T1 ,
        [val,pos]=max(Er);
        Er(pos(1))=0;
        Dictionary(:,jj)=Data(:,pos(1))/norm(Data(:,pos(1)));
        G=Dictionary'*Dictionary; G = G-diag(diag(G));
    end;
end;
这是运行代码之后的结果:

你可能感兴趣的:(算法,K-SVD,压缩感知,稀疏表示,信号重建)