BZOJ 1189 [HNOI2007]紧急疏散evacuate 二分+最大流

题意:
给定一张网格图,图上的点有三种状态
‘X’不可走,’.’空地,’D’门
初始之时每个空地存在一个人,每个时刻每个人都可以走向四个方向中的任意一个方向,并且空地可以停留多个人,然而门所在的地方在某个时刻最多有一个人存在,当有一个人到达门后他就成功逃脱了,可以视为他不存在了。
求所有人都成功逃脱的最小时间。
3<=n<=20,3<=m<=20.
解析:
数据范围给的这么小,第一眼还以为是bfs。。
后来发现门处人无法重叠,而空地可以重叠这个状态我不好记录。
于是考虑答案是否存在单调性。
结果这个答案居然真的存在单调性。
于是我们可以考虑二分出最小时间,接下来检验一下就可以了。
检验的过程无非就是检验是否所有人都可以逃脱。
如果对于时间T检验的话,那么也就是说每个门最多逃跑T个人。
由于数据范围较小,所以我们考虑可以对于每一次二分出来的时间,我们暴力检验每个人能从哪些门走,建出图之后跑一个最大流,检验流量是否等于人数即可。

New Update 15.10.30
我承认这样做是错的,错在什么地方PoPoQQQ的题解里有说,请自行找我的友链,到PoPoQQQ的题解里去看。
但是数据并没有那种情况,所以这个方法可过。
但是正确应该怎么做呢?
我们只要把门拆点就行了。
具体做法Vmurder的博客里有说,请自行找我的友链,到Vmurder的题解里去看。

然而我并不打算修改下方的代码。

代码:

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 510
#define INF 0x3f3f3f3f
using namespace std;
int head[N];
int cnt,n,m,S,T;
struct node
{
    int from,to,val,next;
}edge[N*N];
void init()
{
    memset(head,-1,sizeof(head));
}
void edgeadd(int from,int to,int val)
{
    edge[cnt].from=from,edge[cnt].to=to,edge[cnt].val=val;
    edge[cnt].next=head[from];
    head[from]=cnt++;
}
char s[31][31];
int door[N];
int top,cntpeo;
int dis[31][31][31][31];
bool v[31][31];
int xx[]={0,1,0,-1,0};
int yy[]={0,0,1,0,-1};
struct Point
{
    int x,y;
}pt[N];
void getdoor(int x,int y)
{
    memset(v,0,sizeof(v));
    queue<Point>q;
    Point fir;
    fir.x=x,fir.y=y;
    q.push(fir);
    dis[x][y][fir.x][fir.y]=0,v[fir.x][fir.y]=1;
    while(!q.empty())
    {
        Point u=q.front();
        q.pop();
        for(int i=1;i<=4;i++)
        {
            int tmpx=u.x+xx[i],tmpy=u.y+yy[i];
            if(tmpx<=0||tmpx>n||tmpy<=0||tmpy>m)continue;
            if(v[tmpx][tmpy]||s[tmpx][tmpy]=='X')continue;
            dis[x][y][tmpx][tmpy]=dis[x][y][u.x][u.y]+1;v[tmpx][tmpy]=1;
            if(s[tmpx][tmpy]=='.')
            {
                Point tmp;
                tmp.x=tmpx,tmp.y=tmpy;
                q.push(tmp);
            }
        } 
    } 
}
void pre()
{
    memset(dis,0x3f,sizeof(dis));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(s[i][j]=='.')
                getdoor(i,j);
        }
    }
}
void rebuild(int tim)
{
    init();
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(s[i][j]=='.')
                edgeadd(S,(i-1)*m+j,1),edgeadd((i-1)*m+j,S,0);
            else if(s[i][j]=='D')
                edgeadd((i-1)*m+j,T,tim),edgeadd(T,(i-1)*m+j,0);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(s[i][j]=='.')
            {
                for(int k=1;k<=top;k++)
                {
                    if(dis[i][j][pt[k].x][pt[k].y]<=tim)
                        edgeadd((i-1)*m+j,(pt[k].x-1)*m+pt[k].y,1),edgeadd((pt[k].x-1)*m+pt[k].y,(i-1)*m+j,0);
                }
            }
        }
    }
}
int dep[N];
int bfs()
{
    memset(dep,0,sizeof(dep));
    queue<int>q;
    q.push(S);
    dep[S]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int to=edge[i].to;
            if(dep[to]||edge[i].val==0)continue;
            dep[to]=dep[u]+1;
            q.push(to);
        }
    }
    return dep[T]?1:0;
}
int dfs(int now,int max_vale)
{
    int ret=0;
    if(now==T)return max_vale;
    for(int i=head[now];i!=-1;i=edge[i].next)
    {
        int to=edge[i].to;
        if(dep[to]!=dep[now]+1||edge[i].val==0)continue;
        int tmp=dfs(to,min(max_vale-ret,edge[i].val));
        edge[i].val-=tmp;
        edge[i^1].val+=tmp;
        ret+=tmp;
        if(ret==max_vale)return ret;
    }
    return ret;
}
int dinic()
{
    int ret=0;
    while(bfs())
        while(int t=dfs(S,INF))
            ret+=t;
    return ret;
}
bool check(int tim)
{
    rebuild(tim);
    return dinic()==cntpeo?1:0;
}
int main()
{
    scanf("%d%d",&n,&m);
    S=0,T=n*m+1;
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s[i]+1);
        for(int j=1;j<=m;j++)
        {
            if(s[i][j]=='D')
                pt[++top].x=i,pt[top].y=j;
            else if(s[i][j]=='.')
                cntpeo++;
        }
    }
    pre();
    if(top==0)
        {puts("impossible");return 0;}
    int l=cntpeo/top,r=cntpeo;
    int ans=-1;
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(check(mid))ans=mid,r=mid-1;
        else l=mid+1;
    }
    if(ans==-1)puts("impossible");
    else printf("%d\n",ans);
}

你可能感兴趣的:(数据,X,网格)