给出一张无向图,求一个最小环并输出路径。 说说我的感觉: 包含点 i 和点 j 的最小环,我们可以看成是 i 到 j 之间的最短路和次短路的组合,通过 floyd 可求任意两点之间的最短距离,那么我们只要找到最短路径外的一条最短路来保证 i 和 j 之间可达即可。在做 floyd 循环的同时,我们以 环权值 最小(最短路权值+次短路权值=最小环权值)为标准,一直更新每个点的前驱,也就是记录 i 到 j 的最短路径,以及,能够松弛 i 和 j 的点 k (k 不在 i 到 j 的最短路径中)中代价最小的那个(也就是 i 到 j 之间的次短路),然后按环的自然顺序输出即可。 代码中也注释的很详细了: [cpp] view plaincopy #include<cstdio> #include<cstring> #define find_min(a,b) a<b?a:b const int N = 101; const int INF = 0x7ffffff; int mat[N][N],dist[N][N],pre[N][N],path[N],n; int main() { int i,j,k,m,a,b,c; int num; while(~scanf("%d%d",&n,&m)){ for(i=1;i<=n;i++){ for(j=1;j<=n;j++){ mat[i][j]=dist[i][j]=INF; pre[i][j]=i; } } while(m--){ scanf("%d%d%d",&a,&b,&c); mat[a][b]=mat[b][a]=dist[a][b]=dist[b][a]=find_min(mat[a][b],c); } int min=INF; for(k=1;k<=n;k++){//最短路径外一点将最短路首尾链接,那么就得到一个最小环 for(i=1;i<k;i++){ for(j=i+1;j<k;j++){ //求最小环不能用两点间最短路松弛,因为(i,k)之间的最短路,(k,j)之间的最短路可能有重合的部分 //所以mat[][]其实是不更新的,这里和单纯的floyd最短路不一样 //dist[i][j]保存的是 i 到 j 的最短路权值和 int tmp=dist[i][j]+mat[i][k]+mat[k][j];//这里 k 分别和 i 还有 j 在mat中直接相连 if(tmp<min){ min=tmp; num=0; int p=j; while(p!=i){//回溯 path[num++]=p; p=pre[i][p];//pre[i][j]表示 i 到 j 最短路径上 j 前面的一个点 } path[num++]=i; path[num++]=k; } } } for(i=1;i<=n;i++){ for(j=1;j<=n;j++){ if(dist[i][j]>dist[i][k]+dist[k][j]){ dist[i][j]=dist[i][k]+dist[k][j];//dist[][]保存两点间最短距离 pre[i][j]=pre[k][j]; } } } } if(min==INF)puts("No solution."); else{ printf("%d",path[0]); for(i=1;i<num;i++) printf(" %d",path[i]); puts(""); } } return 0; }