Description
An army of ants walk on a horizontal pole of length l cm, each with a constant speed of 1 cm/s. When a walking ant reaches an end of the pole, it immediatelly falls off it. When two ants meet they turn back and start walking in opposite directions. We know the original positions of ants on the pole, unfortunately, we do not know the directions in which the ants are walking. Your task is to compute the earliest and the latest possible times needed for all ants to fall off the pole.
Input
The first line of input contains one integer giving the number of cases that follow. The data for each case start with two integer numbers: the length of the pole (in cm) and n, the number of ants residing on the pole. These two numbers are followed by n integers giving the position of each ant on the pole as the distance measured from the left end of the pole, in no particular order. All input integers are not bigger than 1000000 and they are separated by whitespace.
Output
For each case of input, output two numbers separated by a single space. The first number is the earliest possible time when all ants fall off the pole (if the directions of their walks are chosen appropriately) and the second number is the latest possible such time.
Sample Input
2
10 3
2 6 7
214 7
11 12 7 13 176 23 191
Sample Output
4 8
38 207
题目大意:
一根棍子上有蚂蚁, 这些蚂蚁朝着一个方向以相同的速度(每秒一个单位长度)一直走(可能是往棍子的任意一端走),一旦蚂蚁碰到迎面走来的一直蚂蚁,那么这两只蚂蚁都会马上往相反方向走。求当所有蚂蚁都会走下棍子的,花费的最小的和最大时间。
分析与总结:
对于每一只蚂蚁,它在棍子上面,距离左端点和右端点的距离可能是相等的也可能是不同的。
蚂蚁的速度都是一样的,那么:
最短时间:蚂蚁向离自己最近的那一端点爬过去
#include <iostream>
#include <cstdio>
using namespace std;
int a[1000001];
int main() {
int i,l,n,t,s,m;
scanf("%d",&t);
while(t--) {
scanf("%d %d",&l,&n);
for(i=0; i<n; i++)
scanf("%d",a+i);
s=m=0;
for(i=0; i<n; i++)
s=max(s,min(a[i],l-a[i]));
for(i=0; i<n; i++)
m=max(m,max(a[i],l-a[i]))
printf("%d %d\n",s,m);
}
return 0;
}
(
让所有的蚂蚁都往近端走,最后总间取决于所有蚂蚁中近端最远的那只蚂蚁
)
最长时间:两个蚂蚁相遇,各自反向爬回去,可以看成:两个蚂蚁相遇,交错而过。那么最长时间即为:向着最远端点爬去的时间(让所有蚂蚁都往远端走,这样最后长时间取决于所有蚂蚁中的远端最远的那只蚂蚁)