uva 10828 - Back to Kernighan-Ritchie(高斯消元)

题目链接;uva 10828 - Back to Kernighan-Ritchie

题目大意:给出一个有向图,从每个节点出发到每个后继节点的概率均等。当执行完一个没有后继的节点后,整个程序终止,程序从从编号1的节点开始。对于每次询问节点,给出每个节点的期望执行次数。

解题思路:大白书的例题。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>

using namespace std;
const int maxn = 105;
const double eps = 1e-9;

double A[maxn][maxn];
int N, Q, d[maxn], inf[maxn];
vector<int> g[maxn];

void init () {
    memset(d, 0, sizeof(d));
    memset(inf, 0, sizeof(inf));
    for (int i = 0; i < maxn; i++)
        g[i].clear();

    int u, v;
    while (scanf("%d%d", &u, &v) == 2 && u + v) {
        u--; v--;
        d[u]++;
        g[v].push_back(u);
    }

    memset(A, 0, sizeof(A));
    for (int i = 0; i < N; i++) {
        A[i][i] = 1;

        for (int j = 0; j < g[i].size(); j++)
            A[i][g[i][j]] -= 1.0 / d[g[i][j]];

        if (i == 0)
            A[i][N] = 1;
    }
}

void gauss_jordan (double a[maxn][maxn], int n) {
    for (int i = 0; i < n; i++) {
        int r = i, p;
        for (p = i + 1; p < n; p++)
            if (fabs(a[p][i]) > fabs(a[r][i]))
                r = p;

        if (r != i) {
            for (int j = 0; j <= n; j++)
                swap (A[r][j], A[i][j]);
        }

        if (fabs(a[r][i]) < eps)
            continue;

        for (int k = 0; k < n; k++) {
            if (k != i) {
                for (int j = n; j >= i; j--)
                    a[k][j] -= a[k][i] / a[i][i] * a[i][j];
            }
        }
    }
}

int main () {
    int cas = 1, x;
    while (scanf("%d", &N) == 1 && N) {
        init();
        gauss_jordan(A, N);

        for (int i = N - 1; i >= 0; i--) {
            if (fabs(A[i][i]) < eps && fabs(A[i][N]) > eps)
                inf[i] = 1;

            for (int j = i + 1; j < N; j++)
                if (fabs(A[i][j]) > eps && inf[j])
                    inf[i] = 1;
        }

        scanf("%d", &Q);
        printf("Case #%d:\n", cas++);
        while (Q--) {
            scanf("%d", &x);
            x--;

            if (inf[x])
                printf("infinity\n");
            else
                printf("%.3lf\n", fabs(A[x][x]) < eps ? 0.0 : A[x][N] / A[x][x]);
        }
    }
    return 0;
}

你可能感兴趣的:(uva 10828 - Back to Kernighan-Ritchie(高斯消元))