题目地址:http://poj.org/problem?id=1274
题意:给你n 头牛,和m 个墙,每头牛有自己喜欢的墙,要求每堵墙只能有一头牛,求最多的匹配数。
分析:二分图的最大匹配
sample_input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
sample_output
4
如下构成二分图,我们可以直接采用匈牙利算法。
给上图添加源点和汇点,就构成了网络流。把图构好后,就可以直接上模板了。
Code:
#include <cstdio> #include <cstring> #include <queue> #include <vector> #include <algorithm> using namespace std; const int maxn = 400 + 10; const int INF = 1000000000; struct Edge { int form, to, cap, flow; }; struct Dinic { int n, m, s, t; vector<Edge> edges; //边表.edges[e]和edges[e^1]互为反向弧 vector<int> G[maxn*maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; //BFS使用 int d[maxn]; //从起点到i的距离 int cur[maxn]; //当前弧指针 void init(int n) { this->n = n; for (int i = 0; i <=n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap) { edges.push_back((Edge) {from, to, cap, 0}); edges.push_back((Edge) {to, from, 0, 0}); m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } bool BFS() {//使用BFS计算出每一个点在残量网络中到t的最短距离d. memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); vis[s] = 1; d[s] = 0; while (!Q.empty()) { int x = Q.front(); Q.pop(); for (int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if (!vis[e.to] && e.cap > e.flow) { //只考虑残量网络中的弧 vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) {//使用DFS从S出发,沿着d值严格递减的顺序进行多路增广。 if (x == t || a == 0) return a; int flow = 0, f; for (int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[G[x][i] ^ 1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } int Maxflow(int s, int t) { this->s = s; this->t = t; int flow = 0; while (BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } }; Dinic g; int n, m, s, t; void make_graph() { int u, c, v; s = 0; t = n + m + 1; g.init(t); for (u = 1; u <= n; u++) { scanf("%d", &c); while (c--) { scanf("%d", &v); g.AddEdge(u, v + n, 1); } } for (u = 1; u <= n; u++) g.AddEdge(s, u, 1); for (u = 1; u <= m; u++) g.AddEdge(u + n, t, 1); } int main() { while (~scanf("%d%d", &n, &m)) { make_graph(); int answer = g.Maxflow(s, t); printf("%d\n", answer); } return 0; }