题目大意:给定一个n个点的有向图,求有多少点对(x,y),使x沿边可到达y
设f[i][j]为从i到j是否可达
首先强联通分量中的任意两个点均可达 于是我们利用Tarjan缩点
缩点之后是一个拓扑图,我们求出拓扑序,沿着拓扑序从后向前DP,状态转移方程为:
f[i][k]=or{ f[j][k] } (i有直连边到达j,1<=k<=n,n为强连通分量的个数)
鉴于每个点的值只会是1或者0,所以我们可以直接状压,或者干脆开bitset,整体取或即可
时间复杂度O(mn/32)
今天各种手滑。。。Tarjan不赋值dpt和low,拓扑序求出来不用,各种调用错数组。。。终于彻底脑残了好开心233 QAQ
#include<bitset> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 2014 using namespace std; int n,ans,map[M][M],topo_map[M][M]; int dpt[M],low[M],v[M],cnt,belong[M],siz[M],_n,stack[M],top; int into[M],q[M],r,h; bitset<M>f[M]; void Tarjan(int x) { int y; dpt[x]=low[x]=++cnt; stack[++top]=x; for(y=1;y<=n;y++) if(map[x][y]) { if(v[y]) continue; if(dpt[y]) low[x]=min(low[x],dpt[y]); else Tarjan(y),low[x]=min(low[x],low[y]); } if(dpt[x]==low[x]) { int t; ++_n; do{ t=stack[top--]; belong[t]=_n; v[t]=1; ++siz[_n]; }while(t!=x); } } void Topology_Sort() { int i,y; for(i=1;i<=_n;i++) if(!into[i]) q[++r]=i; while(r!=h) { int x=q[++h]; for(y=1;y<=_n;y++) if(topo_map[x][y]) { into[y]--; if(!into[y]) q[++r]=y; } } } int main() { int i,j,x; cin>>n; for(i=1;i<=n;i++) for(j=1;j<=n;j++) scanf("%1d",&map[i][j]); for(i=1;i<=n;i++) if(!v[i]) Tarjan(i); for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(map[i][j]&&belong[i]!=belong[j]) { if(!topo_map[belong[i]][belong[j]]) into[belong[j]]++; topo_map[belong[i]][belong[j]]=1; f[belong[i]][belong[j]]=1; } for(i=1;i<=_n;i++) f[i][i]=1; Topology_Sort(); for(i=_n;i;i--) { x=q[i]; for(j=1;j<=_n;j++) if(topo_map[x][j]) f[x]|=f[j]; } for(i=1;i<=_n;i++) for(j=1;j<=_n;j++) if(f[i][j]) ans+=siz[i]*siz[j]; cout<<ans<<endl; }