- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- mysql 统计同一字段不同值的个数
liudachu
Mysql数据库mysql
在一个项目中,制作呃echart图表的时候,遇到一个需求,需要从后端接口获取数据----售票员的姓名和业绩所以需要在订单表中,获取不同售票员的订单数量。订单表解决方案汇总MySQL统计一个列中不同值的数量需求:MySQL统计一个列中不同值的数量,其中origin是用户来源,其中的值有iPhone、Android、Web三种,现在需要分别统计由这三种渠道注册的用户数量。方案1:SELECTcount
- 数仓建模—Data Warebase AI 时代数据平台应当的样子
不二人生
数仓建模人工智能数据仓库数仓建模
DataWarebaseAI时代数据平台应当的样子引言:在这个AI技术飞速发展的时代,我们有能力更深入地发掘数据潜在的价值,而数据处理不应当成为阻碍。云原生分布式DataWarebase将开启处理数据的新范式,它让数据的使用返璞归真,不论是存储还是查询,一个系统满足业务全方位数据需求。打破复杂数据架构的束缚,大大降低数据的使用门槛,释放数据潜能,让数据涌现智能。背景近二十年大数据发展史2002年我
- Flink 通过 Chunjun Oracle LogMiner 实时读取 Oracle 变更日志并写入 Doris 的方案
roman_日积跬步-终至千里
#flink实战flinkoracle大数据
文章目录一、技术背景二、关键技术1、OracleLogMiner2、Chunjun的LogMiner关键流程3、修复ChunjunOracleLogMiner问题一、技术背景在大数据实时同步场景中,需要将Oracle数据库的变更数据(CDC)采集并写入ApacheDoris,以支持数据分析、BI报表、实时数据仓库等应用。本方案基于Flink+Chunjun,通过OracleLogMiner解析Re
- 浏览器开发者工具深度调试指南:从入门到高阶技巧
109702008
编程网络人工智能网络
浏览器开发者工具(DevTools)是现代前端工程师的"瑞士军刀",本文将系统解析其核心功能与实战技巧,助您掌握高效调试的终极奥义。一、基础操作与核心功能1.1工具启动方式快捷键:F12(Win/Linux)|Cmd+Opt+I(Mac)右键菜单:网页任意位置右键→检查(Inspect)移动端调试:启用设备模式(Ctrl+Shift+M)1.2核心面板全景图面板名称核心功能快捷键切换Element
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- NET Core 大数据处理
Gene Z
.NetC#c#
在.NETCore里处理10万条以上的大数据时,可采用以下几种方式,同时也适用于不同的应用场景。1.批量处理方式借助批量操作一次性处理大量数据,从而减少与数据库或外部系统的交互次数,提高性能。例如,在向数据库插入大量数据时,可使用批量插入操作。应用场景适用于数据导入、数据迁移等场景。比如将CSV文件中的大量数据批量导入到数据库中。2.并行处理方式运用并行编程技术(像Parallel.ForEach
- 火山云与腾讯云的优势对比
苹果企业签名分发
腾讯云云计算
首先,我需要确定用户的需求是什么。可能他们是在选择云服务提供商,或者在做市场调研。用户可能是企业的IT决策者,或者是开发人员,需要了解哪个平台更适合他们的项目。接下来,我得收集火山云和腾讯云的基本信息。火山云是字节跳动旗下的,虽然进入市场较晚,但可能有字节的技术支持,比如大数据和AI方面的优势。腾讯云作为老牌厂商,生态完善,产品线全,尤其在游戏、社交等领域有优势。需要对比的方面包括:背景与市场地位
- Flume与Couchbase集成原理与实例
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Flume与Couchbase集成原理与实例作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业对数据存储和处理的效率要求越来越高。在数据采集、存储、处理和分析的各个环节,都需要高效、可靠的技术支持。Flume和Couchbase正是这样两种优秀的工具,前者擅长于数据采集和传输,后者擅长于键值存储和文
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 腾讯云与MongoDB战略合作升级,瞄准AI时代的数据管理服务
CSDN资讯
腾讯云mongodb人工智能
2025年3月20日,腾讯云与MongoDB联合宣布续签战略合作协议,双方将围绕AI时代的技术变革为全球用户提供卓越的数据管理服务。文档数据库MongoDB以其灵活的数据结构、强大的性能和原生的分布式扩展性等特点,成为最受欢迎的NoSQL数据库之一,广泛应用于游戏、社交媒体、电商、金融和物联网等各行各业。在DB-Engines全球数据库排行榜上,MongoDB长期位居NoSQL数据库第一。据了解,
- Hugging Face 模型格式全解析:从 PyTorch 到 GGUF
mingo_敏
DeepLearningpytorch人工智能python
HuggingFace模型格式全解析:从PyTorch到GGUFHuggingFace生态支持多种模型格式,以满足不同场景下的存储、部署和推理需求。以下是主流格式的技术解析与演进脉络:1.PyTorch原生格式(.pt/.pth)特性:直接保存PyTorch的state_dict(模型参数)或完整模型(含结构)。兼容性强,与PyTorch训练/推理流程深度集成。文件体积较大,加载速度较慢,存在安全
- SGM61230 同步降压转换器技术文档
慎独yfs
电子元器件单片机嵌入式硬件
第一章概述SGM61230是一款宽输入电压范围(4.5V至28V)的同步降压转换器,可提供高达3A的输出电流。该器件集成功率开关和峰值电流模式控制补偿电路,采用6引脚TSOT-23封装,内置5ms软启动功能以抑制浪涌电流。关键特性:-**智能保护机制**:逐周期峰值电流限制、输出过压保护(OVP)、带自动恢复的热关断-**高效模式切换**:轻载时进入脉冲跳过模式(PSM),重载时自动切换至PWM模
- 【机器视觉】少量样本图片情况下的图片识别技术方案
yuanpan
机器学习人工智能计算机视觉
在只有少量图片样本的情况下,进行图像识别是一个具有挑战性的任务。以下是一些应对小样本问题的有效方案:1.数据增强(DataAugmentation)通过对现有样本进行各种变换来生成更多的训练数据,例如:几何变换:旋转、缩放、平移、翻转等。颜色变换:调整亮度、对比度、饱和度等。噪声添加:高斯噪声、椒盐噪声等。裁剪和填充:随机裁剪图像的一部分或填充边缘。工具:Keras:ImageDataGenera
- 【SoC基础】单片机之寄存器解析
望闻问嵌
#SoC单片机嵌入式硬件
:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】:文章若有幸对你有帮助,可点赞收藏⭐不迷路:内容若有错误,敬请留言指正!原创文,转载注明出处文章目录1、寄存器位置2、寄存器种类2.1通用用途寄存器2.2CPU执行相关寄存器2.3外设控制寄存器3.寄存器在CPU访问外设过程中起到的作用1、寄
- MySQL- 索引下推
青衫客36
数据库mysql数据库
索引下推(IndexConditionPushdown,简称ICP)是MySQL5.6引入的一项优化技术,它通过将部分查询条件“下推”到索引扫描阶段,从而减少不必要的行访问和回表操作,提高查询性能。1.索引下推的概念在传统的索引扫描过程中,MySQL会首先通过索引找到符合索引条件的记录,然后回表(即访问实际的表数据行)读取所需的列,最后再应用其他过滤条件(非索引条件)来判断这条记录是否符合查询要求
- UNI-APP+VUE3+VITE+VSCode开发经验及填坑记录(持续更新ING)
集成显卡
前端项目实践uni-appvscodeide
uni-app是一个使用Vue.js开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、Web(响应式)、以及各种小程序(微信/支付宝/百度/头条/飞书/QQ/快手/钉钉/淘宝)、快应用等多个平台。快速开发模板unibest:最好的uniapp开发框架,由uniapp+Vue3+Ts+Vite5+UnoCss+VSCode(可选webstorm)+uni插件+wot-ui(
- 指令系统和计算机体系结构——一文解析冯·诺依曼架构
点滴汇聚江河
软考-软件设计师架构
文章目录一、核心思想二、核心组成部分1.中央处理器(CPU)2.内存(Memory)3.输入/输出(I/O)设备4.总线(Bus)三、工作流程四、冯·诺依曼架构的局限性五、现代计算机的改进1.流水线技术(Pipeline)关键机制2.高速缓存(Cache)关键机制3.多核CPU(Multi-Core)关键挑战与解决方案4.乱序执行(Out-of-OrderExecution)关键技术5.其他关键改
- 大模型时代的知识焦虑
机载软件与适航
机器学习-建模算法-代理模型人工智能大数据
引言:浪潮之巅,焦虑暗涌大模型时代已经浩荡而来,如同奔腾的浪潮,以令人惊叹的速度重塑着世界的面貌。从智能客服的温声细语,到AI绘画的妙笔生花,再到自动驾驶的日趋成熟,大型语言模型、图像模型等人工智能技术以前所未有的姿态,渗透进我们生活的方方面面。信息获取前所未有的便捷,知识创造空前高效,人机交互焕然一新,一个充满无限可能的智能化未来似乎触手可及。然而,在这令人眼花缭乱的技术盛景之下,一股无形的焦虑
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)
创新优化代码学习
能源matlab前端
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述含光热电站、有机朗肯循环与P2G的综合能源优化调度研究一、技术基础与系统作用二、多技术协同机制三、优化调度模型构建四、典型案例与仿真分析五、未来研究方向结论2运行结果3参考文献4Matlab代码实现1概述光热发电(concentratingsolarp
- PyCharm的终端(terminal)中进入指定conda虚拟环境
我不是程序员
软件开发工作基础知识pycharmcondalinux
参考这篇博文:PyCharm的终端(terminal)中进入指定conda虚拟环境_pycharm配置conda终端-CSDN博客
- “轻松一键生成 AI 图像:Stable Diffusion Online 带来革命性视觉创意体验!“
ai小精灵
人工智能stablediffusion文心一言AI作画chatgpt
StableDiffusionOnline正在为AI图像生成领域树立新标准,将复杂的功能与便捷直观的用户体验相结合。历史上,StableDiffusion的部署步骤带来了重大挑战,特别是对于技术新手而言。然而,StableDiffusionOnline消除了这些障碍,提供了一个既适合新手也适合资深专业人士的酷炫界面。什么是StableDiffusionOnline?StableDiffusionO
- kvm虚拟化的概念与作用
千航@abc
kvm虚拟化kvm虚拟化
概念——虚拟化是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机。在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率。作用——虚拟化技术可以扩大硬件的容量,简化软件的重新配置过程。CPU的虚拟化技术可以单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间
- PCDN如何优化移动设备的网络体验
yczykjyxgs
pcdn服务器
在移动互联网时代,用户对网络体验的要求不断提升,PCDN(P2PCDN)技术为优化移动设备网络体验提供了创新解决方案。这项技术通过重构传统内容分发模式,有效解决了移动网络环境下的带宽瓶颈和传输延迟问题。PCDN技术的核心在于构建了一个去中心化的内容分发网络。移动设备不再仅仅作为内容消费者,而是同时承担了内容分发节点的角色。这种设计充分利用了移动设备的闲置带宽和存储资源,形成了一个动态的内容共享网络
- ## PCDN中的网络拥塞控制技术探讨
yczykjyxgs
pcdn网络智能路由器
随着互联网视频流量的爆发式增长,传统CDN面临着成本高、扩展性差等挑战。P2PCDN(PCDN)作为一种新兴的内容分发网络架构,通过利用边缘节点的闲置带宽和存储资源,有效降低了内容分发成本,并提升了网络扩展性。然而,PCDN中节点动态性强、网络环境复杂,传统的网络拥塞控制技术难以直接适用,因此需要针对PCDN的特点设计新的拥塞控制机制。PCDN网络拥塞控制面临的挑战1.节点异构性:PCDN节点性能
- PCDN 与传统 CDN 的对比:优势和劣势分析
yczykjyxgs
pcdn智能路由器
在内容分发领域,PCDN和传统CDN是两种重要的技术手段。传统CDN凭借其成熟的架构,在互联网发展历程中发挥着关键作用。它通过在各地广泛部署缓存服务器,将内容缓存至离用户更近的节点,以此加快分发速度。这种模式下,内容传输路径短,能有效减少延迟,为用户提供稳定的访问体验。不过,传统CDN的大规模服务器部署带来了高昂成本,无论是建设费用还是维护成本都不容小觑。PCDN作为融合了P2P技术的新兴内容分发
- CTF杂项挑战:使用已知字典破解ZIP文件密码
0dayNu1L
Web安全CTFweb安全网络安全
在CTF比赛中,杂项挑战通常包含一些非传统的题目,其中破解ZIP文件密码是一个常见的任务。本文将介绍两种在已知密码字典文件的情况下,破解ZIP文件密码的方法:一种是使用Python脚本进行暴力破解,另一种是通过zip2john和john命令结合进行破解。0dayNu1L-CSDN博客请一键三连吧!!!❤❤❤目录方法一:使用Python脚本进行暴力破解步骤方法二:使用zip2john和john命令结
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod