java并发:AbstractQueuedSynchronizer的介绍和原理分析

本文属于java并发系列,原文地址:http://ifeve.com/introduce-abstractqueuedsynchronizer/
并发编程网有原文, 粗看一遍,很多地方不理解。今天在看juc锁的部分,底层还是依赖于aqs实现,特意在原文基础上梳理。
原文如下:

简介

提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架。该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础。使用的方法是继承,子类通过继承同步器并需要实现它的方法来管理其状态,管理的方式就是通过类似acquire和release的方式来操纵状态。然而多线程环境中对状态的操纵必须确保原子性,因此子类对于状态的把握,需要使用这个同步器提供的以下三个方法对状态进行操作:
  • java.util.concurrent.locks.AbstractQueuedSynchronizer.getState()
  • java.util.concurrent.locks.AbstractQueuedSynchronizer.setState(int)
  • java.util.concurrent.locks.AbstractQueuedSynchronizer.compareAndSetState(int, int)
子类推荐被定义为自定义同步装置的内部类,同步器自身没有实现任何同步接口,它仅仅是定义了若干acquire之类的方法来供使用。该同步器即可以作为排他模式也可以作为共享模式,当它被定义为一个排他模式时,其他线程对其的获取就被阻止,而共享模式对于多个线程获取都可以成功。
同步器是实现锁的关键,利用同步器将锁的语义实现,然后在锁的实现中聚合同步器。可以这样理解:锁的API是面向使用者的,它定义了与锁交互的公共行为,而每个锁需要完成特定的操作也是透过这些行为来完成的(比如:可以允许两个线程进行加锁,排除两个以上的线程),但是实现是依托给同步器来完成;同步器面向的是线程访问和资源控制,它定义了线程对资源是否能够获取以及线程的排队等操作。锁和同步器很好的隔离了二者所需要关注的领域,严格意义上讲,同步器可以适用于除了锁以外的其他同步设施上(包括锁)。
站在使用者的角度,AQS的功能可以分为两类:独占功能和共享功能,它的所有子类中,要么实现并使用了它独占功能的API,要么使用了共享锁的功能,而不会同时使用两套API,即便是它最有名的子类ReentrantReadWriteLock,也是通过两个内部类:读锁和写锁,分别实现的两套API来实现的,我们只需要明白AQS在功能上有独占控制和共享控制两种功能即可。
同步器的开始提到了其实现依赖于一个FIFO队列,那么队列中的元素Node就是保存着线程引用和线程状态的容器,每个线程对同步器的访问,都可以看做是队列中的一个节点。Node的主要包含以下成员变量:
Node {
    int waitStatus;
    Node prev;
    Node next;
    Node nextWaiter;
    Thread thread;
}
以上五个成员变量主要负责保存该节点的线程引用,同步等待队列(以下简称sync队列)的前驱和后继节点,同时也包括了同步状态。
属性名称 描述
int waitStatus 表示节点的状态。其中包含的状态有:

  1. CANCELLED,值为1,表示当前的线程被取消;
  2. SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark;
  3. CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中;
  4. PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行;
  5. 值为0,表示当前节点在sync队列中,等待着获取锁。
Node prev 前驱节点,比如当前节点被取消,那就需要前驱节点和后继节点来完成连接。
Node next 后继节点。
Node nextWaiter 存储condition队列中的后继节点。
Thread thread 入队列时的当前线程。
节点成为sync队列和condition队列构建的基础,在同步器中就包含了sync队列。同步器拥有三个成员变量:sync队列的头结点head、sync队列的尾节点tail和状态state。对于锁的获取,请求形成节点,将其挂载在尾部,而锁资源的转移(释放再获取)是从头部开始向后进行。对于同步器维护的状态state,多个线程对其的获取将会产生一个链式的结构。
java并发:AbstractQueuedSynchronizer的介绍和原理分析_第1张图片

API说明

实现自定义同步器时,需要使用同步器提供的getState()、setState()和compareAndSetState()方法来操纵状态的变迁。

方法名称 描述
protected boolean tryAcquire(int arg) 排它的获取这个状态。这个方法的实现需要查询当前状态是否允许获取,然后再进行获取(使用compareAndSetState来做)状态。
protected boolean tryRelease(int arg)  释放状态。
protected int tryAcquireShared(int arg) 共享的模式下获取状态。
protected boolean tryReleaseShared(int arg) 共享的模式下释放状态。
protected boolean isHeldExclusively() 在排它模式下,状态是否被占用。

实现这些方法必须是非阻塞而且是线程安全的,推荐使用该同步器的父类java.util.concurrent.locks.AbstractOwnableSynchronizer来设置当前的线程。
开始提到同步器内部基于一个FIFO队列,对于一个独占锁的获取和释放有以下伪码可以表示。
获取一个排他锁。

01 while(获取锁) {
02     if (获取到) {
03         退出while循环
04     else {
05         if(当前线程没有入队列) {
06             那么入队列
07         }
08         阻塞当前线程
09     }
10 }

释放一个排他锁。

1 if (释放成功) {
2     删除头结点
3     激活原头结点的后继节点
4 }
public class Mutex implements Lock, java.io.Serializable {
	   // 内部类,自定义同步器
	   private static class Sync extends AbstractQueuedSynchronizer {
	     // 是否处于占用状态
	     protected boolean isHeldExclusively() {
	       return getState() == 1;
	     }
	     // 当状态为0的时候获取锁
	     public boolean tryAcquire(int acquires) {
	       assert acquires == 1; // Otherwise unused
	       if (compareAndSetState(0, 1)) {
	         setExclusiveOwnerThread(Thread.currentThread());
	         return true;
	       }
	       return false;
	     }
	     // 释放锁,将状态设置为0
	     protected boolean tryRelease(int releases) {
	       assert releases == 1; // Otherwise unused
	       if (getState() == 0) throw new IllegalMonitorStateException();
	       setExclusiveOwnerThread(null);
	       setState(0);
	       return true;
	     }
	     // 返回一个Condition,每个condition都包含了一个condition队列
	     Condition newCondition() { return new ConditionObject(); }
	   }
	   // 仅需要将操作代理到Sync上即可
	   private final Sync sync = new Sync();
	   public void lock()                { sync.acquire(1); }
	   public boolean tryLock()          { return sync.tryAcquire(1); }
	   public void unlock()              { sync.release(1); }
	   public Condition newCondition()   { return sync.newCondition(); }
	   public boolean isLocked()         { return sync.isHeldExclusively(); }
	   public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }
	   public void lockInterruptibly() throws InterruptedException {
	     sync.acquireInterruptibly(1);
	   }
	   public boolean tryLock(long timeout, TimeUnit unit)
	       throws InterruptedException {
	     return sync.tryAcquireNanos(1, unit.toNanos(timeout));
	   }
	 }

实现分析

加锁:public final void acquire(int arg)

该方法以排他的方式获取锁,对中断不敏感,完成synchronized语义。

  public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
上述逻辑主要包括:
1. 尝试获取(调用tryAcquire更改状态,需要保证原子性);
在tryAcquire方法中使用了同步器提供的对state操作的方法,利用compareAndSet保证只有一个线程能够对状态进行成功修改,而没有成功修改的线程将进入sync队列排队。
 protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
留空了,是想留给子类去实现,这个可以以后结合ReentrantLock的源码去分析。
2. 如果获取不到,将当前线程构造成节点Node并加入sync队列;
进入队列的每个线程都是一个节点Node,从而形成了一个双向队列,类似CLH队列,这样做的目的是线程间的通信会被限制在较小规模(也就是两个节点左右)。( 这里我补充下,下图是CLH队列节点的示意图:

(在CLH队列的节点QNode中包含有一个locked的字段,该字段表示该节点是否需要获取锁,为true表示需要获取,为false表示不需要获取。在CLH队列中,节点与节点之间并不是通过next指针来连接的而是通过myPred所指向节点的变化情况来影响的myNode的行为。)
3. 再次尝试获取,如果没有获取到那么将当前线程从线程调度器上摘下,进入等待状态。
使用LockSupport将当前线程unpark,关于LockSupport后续会详细介绍。
private Node addWaiter(Node mode) {
	Node node = new Node(Thread.currentThread(), mode);
	// 快速尝试在尾部添加
	Node pred = tail;
	if (pred != null) {
		node.prev = pred;
		if (compareAndSetTail(pred, node)) {
			pred.next = node;
			return node;
		}
	}
	enq(node);
	return node;
}
1. 使用当前线程构造Node;
对于一个节点需要做的是将当节点前驱节点指向尾节点(current.prev = tail),尾节点指向它(tail = current),原有的尾节点的后继节点指向它(t.next = current)而这些操作要求是原子的。上面的操作是利用尾节点的设置来保证的,也就是compareAndSetTail来完成的。
2. 先行尝试在队尾添加;
如果尾节点已经有了,然后做如下操作:
(1)分配引用T指向尾节点;
(2)将节点的前驱节点更新为尾节点(current.prev = tail);
(3)如果尾节点是T,那么将当尾节点设置为该节点(tail = current,原子更新);
(4)T的后继节点指向当前节点(T.next = current)。
注意第3点是要求原子的。
这样可以以最短路径O(1)的效果来完成线程入队,是最大化减少开销的一种方式。
3. 如果队尾添加失败或者是第一个入队的节点。
如果是第1个节点,也就是sync队列没有初始化,那么会进入到enq这个方法,进入的线程可能有多个,或者说在addWaiter中没有成功入队的线程都将进入enq这个方法。
 private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

可以看到enq的逻辑是确保进入的Node都会有机会顺序的添加到sync队列中,而加入的步骤如下:
(1)如果尾节点为空,那么原子化的分配一个头节点,并将尾节点指向头节点,这一步是初始化;
(2)然后是重复在addWaiter中做的工作,但是在一个while(true)的循环中,直到当前节点入队为止。
并返回包装的node实例。之前也说过node实例是包含状态的。
进入sync队列之后,接下来就是要进行锁的获取,或者说是访问控制了,只有一个线程能够在同一时刻继续的运行,而其他的进入等待状态。而每个线程都是一个独立的个体,它们自省的观察,当条件满足的时候(自己的前驱是头结点并且原子性的获取了状态),那么这个线程能够继续运行。 看看 acquireQueued是如何实现的(主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回)。
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
上述逻辑主要包括:
1. 获取当前节点的前驱节点;
需要获取当前节点的前驱节点,而头结点所对应的含义是当前站有锁且正在运行。
2. 当前驱节点是头结点并且能够获取状态,代表该当前节点占有锁;
如果满足上述条件,那么代表能够占有锁,根据节点对锁占有的含义,设置头结点为当前节点。
3. 否则进入等待状态。
如果没有轮到当前节点运行,那么将当前线程从线程调度器上摘下,也就是进入等待状态。
注意:这不是无限死循环,因为parkAndCheckInterrupt方法会把当前线程挂起。
  private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
LockSupport.park最终把线程交给系统(Linux)内核进行阻塞,当然这依赖于parkAndCheckInterrupt前面的方法:shouldParkAfterFailedAcquire。这块检查规则我还没看明白,但是从方法介绍上大意是根据之前节点判断当前线程是否该被阻塞。原文如下:
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev
至此,锁住线程的逻辑已经看完了,总结下 acquire
1. 状态的维护;
需要在锁定时,需要维护一个状态(int类型),而对状态的操作是原子和非阻塞的,通过同步器提供的对状态访问的方法对状态进行操纵,并且利用compareAndSet来确保原子性的修改。
2. 状态的获取;
一旦成功的修改了状态,当前线程或者说节点,就被设置为头节点。
3. sync队列的维护。
在获取资源未果的过程中条件不符合的情况下(不该自己,前驱节点不是头节点或者没有获取到资源)进入睡眠状态,停止线程调度器对当前节点线程的调度。
这时引入的一个释放的问题,也就是说使睡眠中的Node或者说线程获得通知的关键,就是前驱节点的通知,而这一个过程就是释放,释放会通知它的后继节点从睡眠中返回准备运行。
下面的流程图基本描述了一次acquire所需要经历的过程:
java并发:AbstractQueuedSynchronizer的介绍和原理分析_第2张图片
如上图所示,其中的判定退出队列的条件,判定条件是否满足和休眠当前线程就是完成了自旋spin的过程。

解锁:release

在unlock方法的实现中,使用了同步器的release方法。相对于在之前的acquire方法中可以得出调用acquire,保证能够获取到锁(成功获取状态),这里我们可以结合上面的图来看,在 加入队列的acquireQueued方法,请求不成功的会被挂起,假如阻塞的线程得到解锁,则继续执行  interrupted = true;重新进入循环,取头结点进行tryAcquire竞争。
release表示将状态设置回去,也就是将资源释放,或者说将锁释放。我们看下具体release方法:
   public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
上述逻辑主要包括:
1. 尝试释放状态;
tryRelease能够保证原子化的将状态设置回去,当然需要使用compareAndSet来保证。如果释放状态成功过之后,将会进入后继节点的唤醒过程。
   protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
这个 tryRelease也是有子类来实现的。
2. 唤醒当前节点的后继节点所包含的线程。
通过LockSupport的unpark方法将休眠中的线程唤醒,让其继续acquire状态。
private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
主要逻辑包括:
设置同步状态。
获取当前节点的后继节点,如果满足状态,那么进行唤醒操作  
如果没有满足状态,从尾部开始找寻符合要求的节点并将其唤醒。
概括下说:unparkSuccessor主要就是获取当前节点的next引用,然后对其线程(Node)进行了唤醒,后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。
回顾整个资源的获取和释放过程:
在获取时,维护了一个sync队列,每个节点都是一个线程在进行自旋,而依据就是自己是否是首节点的后继并且能够获取资源;
在释放时,仅仅需要将资源还回去,然后通知一下后继节点并将其唤醒。
这里需要注意,队列的维护(首节点的更换)是依靠消费者(获取时)来完成的,也就是说在满足了自旋退出的条件时的一刻,这个节点就会被设置成为首节点。
对于acquire,AQS还提供了集中类似的实现(原文讲的比较细,这里只是简单介绍):
acquireInterruptibly:
该方法提供获取状态能力,当然在无法获取状态的情况下会进入sync队列进行排队,这类似acquire,但是和acquire不同的地方在于它能够在外界对当前线程进行中断的时候提前结束获取状态的操作。
doAcquireNanos:
该方法提供了具备有超时功能的获取状态的调用,如果在指定的nanosTimeout内没有获取到状态,那么返回false,反之返回true。可以将该方法看做acquireInterruptibly的升级版,也就是在判断是否被中断的基础上增加了超时控制。

下面看下共享锁:

acquireShared

调用该方法能够以共享模式获取状态,共享模式和之前的独占模式有所区别。以文件的查看为例,如果一个程序在对其进行读取操作,那么这一时刻,对这个文件的写操作就被阻塞,相反,这一时刻另一个程序对其进行同样的读操作是可以进行的。如果一个程序在对其进行写操作,那么所有的读与写操作在这一时刻就被阻塞,直到这个程序完成写操作。
以读写场景为例,描述共享和独占的访问模式,如下图所示:

上图中,红色代表被阻塞,绿色代表可以通过。
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
 protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }
 private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED); //将当前线程包装为类型为Node.SHARED的节点,标示这是一个共享节点。

        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
<span style="font-size:14px;">//如果新建节点的前一个节点,就是Head,说明当前节点是AQS队列中等待获取锁的第一个 节点,</span>
<span style="font-size:14px;">//按照FIFO的原则,可以直接尝试获取锁</span>
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
<span style="white-space:pre">		</span><span style="font-family: Arial, Helvetica, sans-serif;">//获取成功,需要将当前节点设置为AQS队列中的第一个节点,这是AQS的规则//队列的头节点表示正在获取 锁的节点</span><span style="white-space:pre">
	</span>                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) && //检查下是否需要将当前节点挂起
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

上述逻辑主要包括:
1. 尝试获取共享状态;
调用tryAcquireShared来获取共享状态,该方法是非阻塞的,如果获取成功则立刻返回,也就表示获取共享锁成功。
这个也是有子类实现的。
2. 获取失败进入sync队列;
在获取共享状态失败后,当前时刻有可能是独占锁被其他线程所把持,那么将当前线程构造成为节点(共享模式)加入到sync队列中。
3. 循环内判断退出队列条件;
如果当前节点的前驱节点是头结点并且获取共享状态成功,这里和独占锁acquire的退出队列条件类似。
4. 获取共享状态成功;
在退出队列的条件上,和独占锁之间的主要区别在于获取共享状态成功之后的行为,而如果共享状态获取成功之后会判断后继节点是否是共享模式,如果是共享模式,那么就直接对其进行唤醒操作,也就是同时激发多个线程并发的运行。
这里需要注意:
 private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         */
        if (propagate > 0 || h == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
逻辑就是替换头结点为node,将当前节点的下一个节点取出来,如果同样是“shared”类型的,再调用"doReleaseShared"操作。
private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
这段代码我暂时难理解规则,大神 http://www.liuinsect.com/说是共享模式与独占模式的区别。
对于状态是SIGNAL的,看文章开头的解释(表示当前节点的后继节点包含的线程需要运行,也就是unpark),就是去重置状态,unpark.
对于状态是0的,去设置为PROPAGATE(传播状态)。意味着要将状态想下一个节点传播。
共享的状态是可以被共享的,也就是意味着其他AQS队列中的其他节点也应能第一时间知道状态的变化。
5. 获取共享状态失败。
通过使用LockSupport将当前线程从线程调度器上摘下,进入休眠状态。
对于上述逻辑中,节点之间的通知过程如下图所示:
java并发:AbstractQueuedSynchronizer的介绍和原理分析_第3张图片
   比如现在有如下队列:

  当Node1调用tryAcquireShared成功后,更换了头节点:
java并发:AbstractQueuedSynchronizer的介绍和原理分析_第4张图片

 Node1变成了头节点然后调用unparkSuccessor()方法唤醒了Node2,Node2中持有的线程A出于上面流程图的park node的位置, 线程A被唤醒后,重复黄色线条的流程,重新检查调用tryAcquireShared方法,看能否成功,如果成功,则又更改头结点,重复以上步骤,以实现节点自身获取共享锁成功后,唤醒下一个共享类型结点的操作,实现共享状态的向后传递。

共享锁释放 releaseShared

调用该方法释放共享状态,每次获取共享状态acquireShared都会操作状态,同样在共享锁释放的时候,也需要将状态释放。比如说,一个限定一定数量访问的同步工具,每次获取都是共享的,但是如果超过了一定的数量,将会阻塞后续的获取操作,只有当之前获取的消费者将状态释放才可以使阻塞的获取操作得以运行。
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
上述逻辑主要就是调用同步器的tryReleaseShared方法来释放状态,并同时在doReleaseShared方法中唤醒其后继节点。
其中tryReleaseShared为空,留给子类实现。
释放完状态下一步应该去唤醒AQS队列中的头结点了(AQS的队列为FIFO队列),然后由头节点去依次唤醒AQS队列中的其他共享节点。如果tryReleaseShared返回true,进入doReleaseShared()方法,跟之前贴出来的一样。
共享锁总结:
如果获取共享锁失败后,将请求共享锁的线程封装成Node对象放入AQS的队列中,并挂起Node对象对应的线程,实现请求锁线程的等待操作。待共享锁可以被获取后,从头节点开始,依次唤醒头节点及其以后的所有共享类型的节点。实现共享状态的传播。这里有几点值得注意:
1.     与AQS的独占功能一样,共享锁是否可以被获取的判断为空方法,交由子类去实现。
2.     与AQS的独占功能不同,当锁被头节点获取后,独占功能是只有头节点获取锁,其余节点的线程继续沉睡,等待锁被释放后,才会唤醒下一个节点的线程,而共享功能是只要头节点获取锁成功,就在唤醒自身节点对应的线程的同时,继续唤醒AQS队列中的下一个节点的线程,每个节点在唤醒自身的同时还会唤醒下一个节点对应的线程,以实现共享状态的“向后传播”,从而实现共享功能。

demo

在上述对同步器AbstractQueuedSynchronizer进行了实现层面的分析之后,我们通过一个例子来加深对同步器的理解:
设计一个同步工具,该工具在同一时刻,只能有两个线程能够并行访问,超过限制的其他线程进入阻塞状态。
对于这个需求,可以利用同步器完成一个这样的设定,定义一个初始状态,为2,一个线程进行获取那么减1,一个线程释放那么加1,状态正确的范围在[0,1,2]三个之间,当在0时,代表再有新的线程对资源进行获取时只能进入阻塞状态(注意在任何时候进行状态变更的时候均需要以CAS作为原子性保障)。由于资源的数量多于1个,同时可以有两个线程占有资源,因此需要实现tryAcquireShared和tryReleaseShared方法.
package thread;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

public class TwinsLock implements Lock {
	private final Sync	sync	= new Sync(2);

	private static final class Sync extends AbstractQueuedSynchronizer {
		private static final long	serialVersionUID	= -7889272986162341211L;

		Sync(int count) {
			if (count <= 0) {
				throw new IllegalArgumentException("count must large than zero.");
			}
			setState(count);
		}

		public int tryAcquireShared(int reduceCount) {
			for (;;) {
				int current = getState();
				int newCount = current - reduceCount;
				if (newCount < 0 || compareAndSetState(current, newCount)) {
					return newCount;
				}
			}
		}

		public boolean tryReleaseShared(int returnCount) {
			for (;;) {
				int current = getState();
				int newCount = current + returnCount;
				if (compareAndSetState(current, newCount)) {
					return true;
				}
			}
		}
	}

	public void lock() {
		sync.acquireShared(1);
	}

	public void lockInterruptibly() throws InterruptedException {
		sync.acquireSharedInterruptibly(1);
	}

	public boolean tryLock() {
		return sync.tryAcquireShared(1) >= 0;
	}

	public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
		return sync.tryAcquireSharedNanos(1, unit.toNanos(time));
	}

	public void unlock() {
		sync.releaseShared(1);
	}

	@Override
	public Condition newCondition() {
		return null;
	}
}
package thread;

import java.util.concurrent.locks.Lock;

public class TwinsLockTest {

	public static void main(String[] args) throws InterruptedException {
		final Lock lock = new TwinsLock();

		class Worker extends Thread {
			public void run() {
				while (true) {
					lock.lock();

					try {
						Thread.sleep(1000L);
				System.out.println(Thread.currentThread());
						Thread.sleep(1000L);
					} catch (Exception ex) {

					} finally {
						lock.unlock();
					}
				}
			}
		}

		for (int i = 0; i<10; i++) {
			Worker w = new Worker();
			w.start();
		}

		new Thread() {
			public void run() {
				while (true) {

					try {
						Thread.sleep(200L);
						System.out.println();
					} catch (Exception ex) {

					}
				}
			}
		}.start();

		try {
			Thread.sleep(20000L);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
}
上述测试用例的逻辑主要包括:
​1. 打印线程
Worker在两次睡眠之间打印自身线程,如果一个时刻只能有两个线程同时访问,那么打印出来的内容将是成对出现。
​2. 分隔线程
不停的打印换行,能让Worker的输出看起来更加直观。
该测试的结果是在一个时刻,仅有两个线程能够获得到锁,并完成打印,而表象就是打印的内容成对出现

********************************后记****************************
昨晚上看了打算整理出来,发现还是整理不完。今天中午又花时间补全,当然距离真正掌握还差很远,对Doug Lea这样大师设计的框架表示叹为观止。
回顾下历程,脑子大概有个印象就是独占锁跟共享锁。再各自沿着加锁、解锁的源码去分析。因为AQS是抽象类,实际还是根据子类的使用去看它部分留给子类实现的接口。
至于AQS本身其实不关心锁,更是面向线程访问和资源控制,封装了在“访问资源”受限时将请求访问的线程的加入队列、挂起、唤醒等操作。至于他说维护的FIFO队列,则可以理解为获取锁加入对尾,释放锁从对头开始。
后续结合aqs的子类如ReentrantLock来看,try等具体方法的实现。也可以与之前的synchronized进行对比。


参考:
http://uule.iteye.com/blog/2120164
http://ifeve.com/jdk1-8-abstractqueuedsynchronizer/

你可能感兴趣的:(多线程,并发,线程安全,锁)