Caffe学习:使用pycaffe定义网络

使用pycaffe定义网络:

  • 参考链接:Learning LeNet

  • 引入库:

    import caffe
    
    from caffe import layers as L
    from caffe import params as P
  • 使用pycaffe定义Net:

    n = caffe.NetSpec()
  • 定义DataLayer:

    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1. / 255), ntop=2)
    
    # 效果如下:
    
    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      transform_param {
        scale: 0.00392156862745
      }
      data_param {
        source: "mnist/mnist_train_lmdb"
        batch_size: 64
        backend: LMDB
      }
    }
    
  • 定义ConvolutionLayer:

    n.conv1 = L.Convolution(n.data, kernel_size=5,
                            num_output=20, weight_filler=dict(type='xavier'))
    
    # 效果如下:
    
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      convolution_param {
        num_output: 20
        kernel_size: 5
        weight_filler {
          type: "xavier"
        }
      }
    }
  • 定义PoolingLayer:

    n.pool1 = L.Pooling(n.conv1, kernel_size=2,
                        stride=2, pool=P.Pooling.MAX)
    
    # 效果如下:
    
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "conv1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
  • 定义InnerProductLayer:

    n.ip1 = L.InnerProduct(n.pool2, num_output=500,
                           weight_filler=dict(type='xavier'))
    
    # 效果如下:
    
    layer {
      name: "ip1"
      type: "InnerProduct"
      bottom: "pool2"
      top: "ip1"
      inner_product_param {
        num_output: 500
        weight_filler {
          type: "xavier"
        }
      }
    }                   
  • 定义ReLULayer:

    n.relu1 = L.ReLU(n.ip1, in_place=True)
    
    # 效果如下:
    
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "ip1"
      top: "ip1"
    }
  • 定义SoftmaxWithLossLayer:

    n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
    
    # 效果如下:
    
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "ip2"
      bottom: "label"
      top: "loss"
    }
  • 定义minst网络:

    import caffe
    
    from caffe import layers as L
    from caffe import params as P
    
    def lenet(lmdb, batch_size):
        n = caffe.NetSpec()
        n.data, n.label = L.Data(batch_size=batch_size,
                                 backend=P.Data.LMDB, source=lmdb,
                                 transform_param=dict(scale=1. / 255), ntop=2)
        n.conv1 = L.Convolution(n.data, kernel_size=5,
                                num_output=20, weight_filler=dict(type='xavier'))
        n.pool1 = L.Pooling(n.conv1, kernel_size=2,
                            stride=2, pool=P.Pooling.MAX)
        n.conv2 = L.Convolution(n.pool1, kernel_size=5,
                                num_output=50, weight_filler=dict(type='xavier'))
        n.pool2 = L.Pooling(n.conv2, kernel_size=2,
                            stride=2, pool=P.Pooling.MAX)
        n.ip1 = L.InnerProduct(n.pool2, num_output=500,
                               weight_filler=dict(type='xavier'))
        n.relu1 = L.ReLU(n.ip1, in_place=True)
        n.ip2 = L.InnerProduct(n.relu1, num_output=10,
                               weight_filler=dict(type='xavier'))
        n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
    
        return n.to_proto()
  • 保存网络定义:

    with open('mnist/lenet_auto_train.prototxt', 'w') as f:
        f.write(str(lenet('mnist/mnist_train_lmdb', 64)))
    with open('mnist/lenet_auto_test.prototxt', 'w') as f:
        f.write(str(lenet('mnist/mnist_test_lmdb', 100)))
  • lenet_auto_train.prototxt文件如下:(lenet_auto_test.prototxt文件类似):

    layer { name: "data" type: "Data" top: "data" top: "label" transform_param { scale: 0.00392156862745 }
      data_param { source: "mnist/mnist_train_lmdb" batch_size: 64 backend: LMDB }
    }
    layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" convolution_param { num_output: 20 kernel_size: 5 weight_filler { type: "xavier" }
      }
    }
    layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 }
    }
    layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" convolution_param { num_output: 50 kernel_size: 5 weight_filler { type: "xavier" }
      }
    }
    layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 }
    }
    layer { name: "ip1" type: "InnerProduct" bottom: "pool2" top: "ip1" inner_product_param { num_output: 500 weight_filler { type: "xavier" }
      }
    }
    layer { name: "relu1" type: "ReLU" bottom: "ip1" top: "ip1" }
    layer { name: "ip2" type: "InnerProduct" bottom: "ip1" top: "ip2" inner_product_param { num_output: 10 weight_filler { type: "xavier" }
      }
    }
    layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip2" bottom: "label" top: "loss" }
    

你可能感兴趣的:(python,caffe)