参考链接:Learning LeNet
引入库:
import caffe
from caffe import layers as L
from caffe import params as P
使用pycaffe定义Net:
n = caffe.NetSpec()
定义DataLayer:
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1. / 255), ntop=2)
# 效果如下:
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
transform_param {
scale: 0.00392156862745
}
data_param {
source: "mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
定义ConvolutionLayer:
n.conv1 = L.Convolution(n.data, kernel_size=5,
num_output=20, weight_filler=dict(type='xavier'))
# 效果如下:
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 20
kernel_size: 5
weight_filler {
type: "xavier"
}
}
}
定义PoolingLayer:
n.pool1 = L.Pooling(n.conv1, kernel_size=2,
stride=2, pool=P.Pooling.MAX)
# 效果如下:
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
定义InnerProductLayer:
n.ip1 = L.InnerProduct(n.pool2, num_output=500,
weight_filler=dict(type='xavier'))
# 效果如下:
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
}
}
定义ReLULayer:
n.relu1 = L.ReLU(n.ip1, in_place=True)
# 效果如下:
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
定义SoftmaxWithLossLayer:
n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
# 效果如下:
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
定义minst网络:
import caffe
from caffe import layers as L
from caffe import params as P
def lenet(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size,
backend=P.Data.LMDB, source=lmdb,
transform_param=dict(scale=1. / 255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=5,
num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2,
stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5,
num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2,
stride=2, pool=P.Pooling.MAX)
n.ip1 = L.InnerProduct(n.pool2, num_output=500,
weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.ip1, in_place=True)
n.ip2 = L.InnerProduct(n.relu1, num_output=10,
weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
return n.to_proto()
保存网络定义:
with open('mnist/lenet_auto_train.prototxt', 'w') as f:
f.write(str(lenet('mnist/mnist_train_lmdb', 64)))
with open('mnist/lenet_auto_test.prototxt', 'w') as f:
f.write(str(lenet('mnist/mnist_test_lmdb', 100)))
得lenet_auto_train.prototxt
文件如下:(lenet_auto_test.prototxt
文件类似):
layer { name: "data" type: "Data" top: "data" top: "label" transform_param { scale: 0.00392156862745 }
data_param { source: "mnist/mnist_train_lmdb" batch_size: 64 backend: LMDB }
}
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" convolution_param { num_output: 20 kernel_size: 5 weight_filler { type: "xavier" }
}
}
layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 }
}
layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" convolution_param { num_output: 50 kernel_size: 5 weight_filler { type: "xavier" }
}
}
layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 }
}
layer { name: "ip1" type: "InnerProduct" bottom: "pool2" top: "ip1" inner_product_param { num_output: 500 weight_filler { type: "xavier" }
}
}
layer { name: "relu1" type: "ReLU" bottom: "ip1" top: "ip1" }
layer { name: "ip2" type: "InnerProduct" bottom: "ip1" top: "ip2" inner_product_param { num_output: 10 weight_filler { type: "xavier" }
}
}
layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip2" bottom: "label" top: "loss" }