数据传输过程简单加密--MD5 SHA

我们在与服务器交互的时候有时候要传递某些参数,比如用户名、密码等等,那这些重要的隐私信息有可能会被拦截,所以在发送给服务器过程前我们要加一次密文。本篇介绍MD5,主要是MessageDigest的使用,Base64加密算法参见之前的博客:http://blog.csdn.net/luzhenyuxfcy/article/details/48374395


import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public  class  MD5Encode {
	public static String md5(String string) {
	    byte[] hash;
	    try {
	        hash = MessageDigest.getInstance("MD5").digest(string.getBytes("UTF-8"));
	    } catch (NoSuchAlgorithmException e) {
	        throw new RuntimeException("Huh, MD5 should be supported?", e);
	    } catch (UnsupportedEncodingException e) {
	        throw new RuntimeException("Huh, UTF-8 should be supported?", e);
	    }

	    StringBuilder hex = new StringBuilder(hash.length * 2);
	    for (byte b : hash) {
	        if ((b & 0xFF) < 0x10) hex.append("0");
	        hex.append(Integer.toHexString(b & 0xFF));
	    }
	    return hex.toString();
	}

}


看到一个工具类:这个也不错,实用性更好

import java.io.File;  
import java.io.FileInputStream;  
import java.io.IOException;  
import java.io.InputStream;  
import java.nio.MappedByteBuffer;  
import java.nio.channels.FileChannel;  
import java.security.MessageDigest;  
import java.security.NoSuchAlgorithmException;  
  
public class MD5Util {  
    /** 
     * 默认的密码字符串组合,用来将字节转换成 16 进制表示的字符,apache校验下载的文件的正确性用的就是默认的这个组合 
     */  
    protected static char hexDigits[] = { '0', '1', '2', '3', '4', '5', '6',  
            '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };  
  
    protected static MessageDigest messagedigest = null;  
    static {  
        try {  
            messagedigest = MessageDigest.getInstance("MD5");  
        } catch (NoSuchAlgorithmException nsaex) {  
            System.err.println(MD5Util.class.getName()  
                    + "初始化失败,MessageDigest不支持MD5Util。");  
            nsaex.printStackTrace();  
        }  
    }  
      
    /** 
     * 生成字符串的md5校验值 
     *  
     * @param s 
     * @return 
     */  
    public static String getMD5String(String s) {  
        return getMD5String(s.getBytes());  
    }  
      
    /** 
     * 判断字符串的md5校验码是否与一个已知的md5码相匹配 
     *  
     * @param password 要校验的字符串 
     * @param md5PwdStr 已知的md5校验码 
     * @return 
     */  
    public static boolean checkPassword(String password, String md5PwdStr) {  
        String s = getMD5String(password);  
        return s.equals(md5PwdStr);  
    }  
      
    /** 
     * 生成文件的md5校验值 
     *  
     * @param file 
     * @return 
     * @throws IOException 
     */  
    public static String getFileMD5String(File file) throws IOException {         
        InputStream fis;  
        fis = new FileInputStream(file);  
        byte[] buffer = new byte[1024];  
        int numRead = 0;  
        while ((numRead = fis.read(buffer)) > 0) {  
            messagedigest.update(buffer, 0, numRead);  
        }  
        fis.close();  
        return bufferToHex(messagedigest.digest());  
    }  
  
    /** 
     * JDK1.4中不支持以MappedByteBuffer类型为参数update方法,并且网上有讨论要慎用MappedByteBuffer, 
     * 原因是当使用 FileChannel.map 方法时,MappedByteBuffer 已经在系统内占用了一个句柄, 
     * 而使用 FileChannel.close 方法是无法释放这个句柄的,且FileChannel有没有提供类似 unmap 的方法, 
     * 因此会出现无法删除文件的情况。 
     *  
     * 不推荐使用 
     *  
     * @param file 
     * @return 
     * @throws IOException 
     */  
    public static String getFileMD5String_old(File file) throws IOException {  
        FileInputStream in = new FileInputStream(file);  
        FileChannel ch = in.getChannel();  
        MappedByteBuffer byteBuffer = ch.map(FileChannel.MapMode.READ_ONLY, 0,  
                file.length());  
        messagedigest.update(byteBuffer);  
        return bufferToHex(messagedigest.digest());  
    }  
  
    public static String getMD5String(byte[] bytes) {  
        messagedigest.update(bytes);  
        return bufferToHex(messagedigest.digest());  
    }  
  
    private static String bufferToHex(byte bytes[]) {  
        return bufferToHex(bytes, 0, bytes.length);  
    }  
  
    private static String bufferToHex(byte bytes[], int m, int n) {  
        StringBuffer stringbuffer = new StringBuffer(2 * n);  
        int k = m + n;  
        for (int l = m; l < k; l++) {  
            appendHexPair(bytes[l], stringbuffer);  
        }  
        return stringbuffer.toString();  
    }  
  
    private static void appendHexPair(byte bt, StringBuffer stringbuffer) {  
        char c0 = hexDigits[(bt & 0xf0) >> 4];// 取字节中高 4 位的数字转换, >>> 为逻辑右移,将符号位一起右移,此处未发现两种符号有何不同   
        char c1 = hexDigits[bt & 0xf];// 取字节中低 4 位的数字转换   
        stringbuffer.append(c0);  
        stringbuffer.append(c1);  
    }  
       
} 

我们可以看一下MD5的源代码:

/******************************************************************************* 
 * MD5_SRC 类实现了RSA Data Security, Inc.在提交给IETF的RFC1321中的MD5_SRC message-digest 
 * 算法。 
 ******************************************************************************/  
public class MD5_SRC {  
    /* 
     * 下面这些S11-S44实际上是一个4*4的矩阵,在原始的C实现中是用#define 实现的, 这里把它们实现成为static 
     * final是表示了只读,且能在同一个进程空间内的多个 Instance间共享 
     */  
    static final int S11 = 7;  
  
    static final int S12 = 12;  
  
    static final int S13 = 17;  
  
    static final int S14 = 22;  
  
    static final int S21 = 5;  
  
    static final int S22 = 9;  
  
    static final int S23 = 14;  
  
    static final int S24 = 20;  
  
    static final int S31 = 4;  
  
    static final int S32 = 11;  
  
    static final int S33 = 16;  
  
    static final int S34 = 23;  
  
    static final int S41 = 6;  
  
    static final int S42 = 10;  
  
    static final int S43 = 15;  
  
    static final int S44 = 21;  
  
    static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
            0, 0, 0, 0, 0, 0, 0 };  
  
    /* 
     * 下面的三个成员是keyBean计算过程中用到的3个核心数据,在原始的C实现中 被定义到keyBean_CTX结构中 
     */  
    private long[] state = new long[4]; // state (ABCD)  
  
    private long[] count = new long[2]; // number of bits, modulo 2^64 (lsb first)  
  
    private byte[] buffer = new byte[64]; // input buffer  
  
    /* 
     * digestHexStr是keyBean的唯一一个公共成员,是最新一次计算结果的 16进制ASCII表示. 
     */  
  
    public String digestHexStr;  
  
    /* 
     * digest,是最新一次计算结果的2进制内部表示,表示128bit的keyBean值. 
     */  
    private byte[] digest = new byte[16];  
  
    /* 
     * getkeyBeanofStr是类keyBean最主要的公共方法,入口参数是你想要进行keyBean变换的字符串 
     * 返回的是变换完的结果,这个结果是从公共成员digestHexStr取得的. 
     */  
    public String getkeyBeanofStr(String inbuf) {  
        keyBeanInit();  
        keyBeanUpdate(inbuf.getBytes(), inbuf.length());  
        keyBeanFinal();  
        digestHexStr = "";  
        for (int i = 0; i < 16; i++) {  
            digestHexStr += byteHEX(digest[i]);  
        }  
        return digestHexStr;  
    }  
  
    // 这是keyBean这个类的标准构造函数,JavaBean要求有一个public的并且没有参数的构造函数  
    public MD5_SRC() {  
        keyBeanInit();  
        return;  
    }  
  
    /* keyBeanInit是一个初始化函数,初始化核心变量,装入标准的幻数 */  
    private void keyBeanInit() {  
        count[0] = 0L;  
        count[1] = 0L;  
        // /* Load magic initialization constants.  
        state[0] = 0x67452301L;  
        state[1] = 0xefcdab89L;  
        state[2] = 0x98badcfeL;  
        state[3] = 0x10325476L;  
        return;  
    }  
  
    /*  
     * F, G, H ,I 是4个基本的keyBean函数,在原始的keyBean的C实现中,由于它们是  
     * 简单的位运算,可能出于效率的考虑把它们实现成了宏,在java中,我们把它们 实现成了private方法,名字保持了原来C中的。  
     */  
    private long F(long x, long y, long z) {  
        return (x & y) | ((~x) & z);  
    }  
  
    private long G(long x, long y, long z) {  
        return (x & z) | (y & (~z));  
    }  
  
    private long H(long x, long y, long z) {  
        return x ^ y ^ z;  
    }  
  
    private long I(long x, long y, long z) {  
        return y ^ (x | (~z));  
    }  
  
    /* 
     * FF,GG,HH和II将调用F,G,H,I进行近一步变换 FF, GG, HH, and II transformations for 
     * rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent 
     * recomputation. 
     */  
    private long FF(long a, long b, long c, long d, long x, long s, long ac) {  
        a += F(b, c, d) + x + ac;  
        a = ((int) a << s) | ((int) a >>> (32 - s));  
        a += b;  
        return a;  
    }  
  
    private long GG(long a, long b, long c, long d, long x, long s, long ac) {  
        a += G(b, c, d) + x + ac;  
        a = ((int) a << s) | ((int) a >>> (32 - s));  
        a += b;  
        return a;  
    }  
  
    private long HH(long a, long b, long c, long d, long x, long s, long ac) {  
        a += H(b, c, d) + x + ac;  
        a = ((int) a << s) | ((int) a >>> (32 - s));  
        a += b;  
        return a;  
    }  
  
    private long II(long a, long b, long c, long d, long x, long s, long ac) {  
        a += I(b, c, d) + x + ac;  
        a = ((int) a << s) | ((int) a >>> (32 - s));  
        a += b;  
        return a;  
    }  
  
    /* 
     * keyBeanUpdate是keyBean的主计算过程,inbuf是要变换的字节串,inputlen是长度,这个 
     * 函数由getkeyBeanofStr调用,调用之前需要调用keyBeaninit,因此把它设计成private的 
     */  
    private void keyBeanUpdate(byte[] inbuf, int inputLen) {  
        int i, index, partLen;  
        byte[] block = new byte[64];  
        index = (int) (count[0] >>> 3) & 0x3F;  
        // /* Update number of bits */  
        if ((count[0] += (inputLen << 3)) < (inputLen << 3))  
            count[1]++;  
        count[1] += (inputLen >>> 29);  
        partLen = 64 - index;  
        // Transform as many times as possible.  
        if (inputLen >= partLen) {  
            keyBeanMemcpy(buffer, inbuf, index, 0, partLen);  
            keyBeanTransform(buffer);  
            for (i = partLen; i + 63 < inputLen; i += 64) {  
                keyBeanMemcpy(block, inbuf, 0, i, 64);  
                keyBeanTransform(block);  
            }  
            index = 0;  
        } else  
            i = 0;  
        // /* Buffer remaining input */  
        keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);  
    }  
  
    /* 
     * keyBeanFinal整理和填写输出结果 
     */  
    private void keyBeanFinal() {  
        byte[] bits = new byte[8];  
        int index, padLen;  
        // /* Save number of bits */  
        Encode(bits, count, 8);  
        // /* Pad out to 56 mod 64.  
        index = (int) (count[0] >>> 3) & 0x3f;  
        padLen = (index < 56) ? (56 - index) : (120 - index);  
        keyBeanUpdate(PADDING, padLen);  
        // /* Append length (before padding) */  
        keyBeanUpdate(bits, 8);  
        // /* Store state in digest */  
        Encode(digest, state, 16);  
    }  
  
    /* 
     * keyBeanMemcpy是一个内部使用的byte数组的块拷贝函数,从input的inpos开始把len长度的 
     * 字节拷贝到output的outpos位置开始 
     */  
    private void keyBeanMemcpy(byte[] output, byte[] input, int outpos,  
            int inpos, int len) {  
        int i;  
        for (i = 0; i < len; i++)  
            output[outpos + i] = input[inpos + i];  
    }  
  
    /* 
     * keyBeanTransform是keyBean核心变换程序,由keyBeanUpdate调用,block是分块的原始字节 
     */  
    private void keyBeanTransform(byte block[]) {  
        long a = state[0], b = state[1], c = state[2], d = state[3];  
        long[] x = new long[16];  
        Decode(x, block, 64);  
        /* Round 1 */  
        a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */  
        d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */  
        c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */  
        b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */  
        a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */  
        d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */  
        c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */  
        b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */  
        a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */  
        d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */  
        c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */  
        b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */  
        a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */  
        d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */  
        c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */  
        b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */  
        /* Round 2 */  
        a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */  
        d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */  
        c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */  
        b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */  
        a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */  
        d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */  
        c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */  
        b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */  
        a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */  
        d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */  
        c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */  
        b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */  
        a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */  
        d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */  
        c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */  
        b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */  
        /* Round 3 */  
        a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */  
        d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */  
        c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */  
        b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */  
        a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */  
        d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */  
        c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */  
        b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */  
        a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */  
        d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */  
        c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */  
        b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */  
        a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */  
        d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */  
        c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */  
        b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */  
        /* Round 4 */  
        a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */  
        d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */  
        c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */  
        b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */  
        a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */  
        d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */  
        c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */  
        b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */  
        a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */  
        d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */  
        c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */  
        b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */  
        a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */  
        d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */  
        c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */  
        b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */  
        state[0] += a;  
        state[1] += b;  
        state[2] += c;  
        state[3] += d;  
    }  
  
    /* 
     * Encode把long数组按顺序拆成byte数组,因为java的long类型是64bit的,只拆低32bit,以适应原始C实现的用途 
     */  
    private void Encode(byte[] output, long[] input, int len) {  
        int i, j;  
        for (i = 0, j = 0; j < len; i++, j += 4) {  
            output[j] = (byte) (input[i] & 0xffL);  
            output[j + 1] = (byte) ((input[i] >>> 8) & 0xffL);  
            output[j + 2] = (byte) ((input[i] >>> 16) & 0xffL);  
            output[j + 3] = (byte) ((input[i] >>> 24) & 0xffL);  
        }  
    }  
  
    /* 
     * Decode把byte数组按顺序合成成long数组,因为java的long类型是64bit的, 
     * 只合成低32bit,高32bit清零,以适应原始C实现的用途 
     */  
    private void Decode(long[] output, byte[] input, int len) {  
        int i, j;  
  
        for (i = 0, j = 0; j < len; i++, j += 4)  
            output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) << 8)  
                    | (b2iu(input[j + 2]) << 16) | (b2iu(input[j + 3]) << 24);  
        return;  
    }  
  
    /* 
     * b2iu是我写的一个把byte按照不考虑正负号的原则的”升位”程序,因为java没有unsigned运算 
     */  
    public static long b2iu(byte b) {  
        return b < 0 ? b & 0x7F + 128 : b;  
    }  
  
    /* 
     * byteHEX(),用来把一个byte类型的数转换成十六进制的ASCII表示, 
     * 因为java中的byte的toString无法实现这一点,我们又没有C语言中的 sprintf(outbuf,"%02X",ib) 
     */  
    public static String byteHEX(byte ib) {  
        char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',  
                'B', 'C', 'D', 'E', 'F' };  
        char[] ob = new char[2];  
        ob[0] = Digit[(ib >>> 4) & 0X0F];  
        ob[1] = Digit[ib & 0X0F];  
        String s = new String(ob);  
        return s;  
    }  
}

封装一个通用的方式:

/**
	 * 将摘要信息转换成MD5编码
	 * @param message 摘要信息
	 * @return MD5编码之后的字符串
	 */
	public String md5Encode(String message){
		return Encode("MD5",message);
	}
	/**
	 * 将摘要信息转换成SHA编码
	 * @param message 摘要信息
	 * @return SHA编码之后的字符串
	 */
	public String shaEncode(String message){
		return Encode("SHA",message);
	}
	/**
	 * 将摘要信息转换成SHA-256编码
	 * @param message 摘要信息
	 * @return SHA-256编码之后的字符串
	 */
	public String sha256Encode(String message){
		return Encode("SHA-256",message);
	}
	/**
	 * 将摘要信息转换成SHA-512编码
	 * @param message 摘要信息
	 * @return SHA-512编码之后的字符串
	 */
	public String sha512Encode(String message){
		return Encode("SHA-512",message);
	}

        /**
	 * 将摘要信息转换为相应的编码
	 * @param code 编码类型
	 * @param message 摘要信息
	 * @return 相应的编码字符串
	 */
	private String Encode(String code,String message){
		MessageDigest md;
		String encode = null;
		try {
			md = MessageDigest.getInstance(code);
			encode = byteArrayToHexString(md.digest(message
					.getBytes()));
		} catch (NoSuchAlgorithmException e) {
			e.printStackTrace();
		}
		return encode;
	}



你可能感兴趣的:(数据传输过程简单加密--MD5 SHA)