Hadoop2.6.0版本MapReudce示例之WordCount

        一、准备测试数据

        1、在本地Linux系统/var/lib/hadoop-hdfs/file/路径下准备两个文件file1.txt和file2.txt,文件列表及各自内容如下图所示:


Hadoop2.6.0版本MapReudce示例之WordCount_第1张图片

        2、在hdfs中,准备/input路径,并上传两个文件file1.txt和file2.txt,如下图所示:



        二、编写代码,封装Jar包并上传至linux

        将代码封装成TestMapReduce.jar,并上传至linux的/usr/local路径下,如下图所示:



        三、运行命令

        执行命令如下:hadoop jar /usr/local/TestMapReduce.jar com.jngreen.mapreduce.test.WordCount /input/file1.txt /input/file2.txt /output/output

        命令执行过程截图如下:

Hadoop2.6.0版本MapReudce示例之WordCount_第2张图片


Hadoop2.6.0版本MapReudce示例之WordCount_第3张图片

        四、查看运行结果

        查看hdfs输出路径/output下的结果,如下图所示:

Hadoop2.6.0版本MapReudce示例之WordCount_第4张图片

Hadoop2.6.0版本MapReudce示例之WordCount_第5张图片

        运行结果为Hello 4、Hadoop 1、Man 1、Boy 1、Word 1,完全正确!

        五、WordCount展示

        源码如下:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

  // TokenizerMapper作为Map阶段,需要继承Mapper,并重写map()函数
  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      
      // 用StringTokenizer作为分词器,对value进行分词
      StringTokenizer itr = new StringTokenizer(value.toString());
      
      // 遍历分词后结果
      while (itr.hasMoreTokens()) {
    	  
    	// 将String设置入Text类型word
        word.set(itr.nextToken());
        // 将(word,1),即(Text,IntWritable)写入上下文context,供后续Reduce阶段使用
        context.write(word, one);
      }
    }
  }
  
  // IntSumReducer作为Reduce阶段,需要继承Reducer,并重写reduce()函数
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      // 遍历map阶段输出结果中的values中每个val,累加至sum
      for (IntWritable val : values) {
        sum += val.get();
      }
      
      // 将sum设置入IntWritable类型result
      result.set(sum);
      
      // 通过上下文context的write()方法,输出结果(key, result),即(Text,IntWritable)
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    // 加载hadoop配置
	Configuration conf = new Configuration();
    
	// 校验命令行输入参数
	if (args.length < 2) {
      System.err.println("Usage: wordcount <in> [<in>...] <out>");
      System.exit(2);
    }
	
	// 构造一个Job实例job,并命名为"word count"
    Job job = new Job(conf, "word count");
    
    // 设置jar
    job.setJarByClass(WordCount.class);
    
    // 设置Mapper
    job.setMapperClass(TokenizerMapper.class);
    // 设置Combiner
    job.setCombinerClass(IntSumReducer.class);
    // 设置Reducer
    job.setReducerClass(IntSumReducer.class);
    // 设置OutputKey
    job.setOutputKeyClass(Text.class);
    // 设置OutputValue
    job.setOutputValueClass(IntWritable.class);
    
    // 添加输入路径
    for (int i = 0; i < args.length - 1; ++i) {
      FileInputFormat.addInputPath(job, new Path(args[i]));
    }
    
    // 添加输出路径
    FileOutputFormat.setOutputPath(job,
      new Path(args[args.length - 1]));
    
    // 等待作业job运行完成并退出
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}


你可能感兴趣的:(Hadoop2.6.0版本MapReudce示例之WordCount)