- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 面试基础---面试刷题推荐 二分查找算法:搜索旋转排序数组
WeiLai1112
leetcode刷题算法面试数据结构架构分布式职场和发展java
二分查找算法:搜索旋转排序数组引言:二分查找的核心思想二分查找是一种高效的搜索算法,适用于有序数组。它的核心思想是通过不断缩小搜索范围,将时间复杂度从O(n)降低到O(logn)。本文将以“搜索旋转排序数组”为例,详细讲解二分查找的实现,并提供易于记忆的代码模板。一、问题描述1.1题目假设一个按升序排列的数组在某个未知的点上进行了旋转(例如,[0,1,2,4,5,6,7]可能变为[4,5,6,7,
- android 32位crc,android arm64硬件实现加速crc32算法
Luo Patrick
android32位crc
在androidarm64平台下,crc32,aes等常用算法有指令集实现。故在android下,可借助这些指令实现代码加速。如何判断自己的手机是否支持crc32呢?有三个方法:方法1,直接查看/proc/cpuinfo方法2,使用ELF辅助向量APIunsignedlonghwcap=getauxval(AT_HWCAP);if(hwcap&HWCAP_CRC32)return1;}return
- 群体智能优化算法-黄金正余弦优化算法(含Matlab源代码)
EOL_HRZ
算法matlab开发语言群体智能优化优化
摘要黄金正余弦优化算法(GoldenSineAlgorithm,GoldSA)是一种数学启发式算法,基于黄金分割系数(GoldenRatio)以及正余弦函数的随机扰动机制来更新解的位置。该算法通过在迭代过程中不断利用黄金分割比例来调整搜索范围,同时结合正弦与余弦变化,为个体提供多样化的全局搜索与局部微调能力。本文提供了GoldSA的核心思想与完整MATLAB代码,并附上中文详细注释,以帮助读者深入
- 安卓实现魔改版 Base64 算法
CYRUS STUDIO
android算法逆向base64网络安全安全
版权归作者所有,如有转发,请注明文章出处:https://cyrus-studio.github.io/blog/Java实现标准Base64编码和解码Base64编码:valencoded=Base64.encodeToString(str.toByteArray(),Base64.DEFAULT)Base64解码:valdecoded=Base64.decode(str,Base64.DEFA
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- C++ 并发编程实战 学习笔记
myc13381
c++笔记
C++并发编程学习笔记目录一.基本接口二.初步了解多线程三.线程所属权管理四.线程间共享数据五.同步并发操作六.C++内存模型和原子类型操作七.基于锁的并发数据结构设计八.无锁数据结构九.并发代码设计十.高级线程管理十一.并行算法十二.参考资料基本接口std::thread常用成员函数构造和析构函数//默认构造函数,创建一个线程,什么也不做thread()noexcept;//初始化构造函数,创建
- 设计无锁的并发数据结构_第七章_《C++并发编程实战》笔记
郭涤生
#并发线程c/c++数据结构c++
设计无锁的并发数据结构1.核心概念与难点1.1无锁(Lock-Free)条件1.2原子操作的重要性1.3内存顺序(MemoryOrder)1.4ABA问题2.代码解析:无锁栈的实现(简化)3.多选题目4.设计题目5.多选题答案6.设计题参考答案1.核心概念与难点1.1无锁(Lock-Free)条件定义:一种并发算法的实现方式,保证无限执行进程中至少有一个线程能推进操作(系统整体进步)。关键特性:无
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 文件关键字搜索技术要点与实战
体制教科书
本文还有配套的精品资源,点击获取简介:在IT行业中,能够通过输入关键字高效定位和管理大量文档是一项重要的技能。此功能通常集成于文件管理软件、搜索引擎或脚本程序中。技术实现包括文件系统API、文本搜索算法和文件过滤规则。本文将详细介绍这些技术要点,例如使用文件系统API遍历文件、采用高效文本搜索算法(如Boyer-Moore)以及应用文件过滤规则(包括类型筛选和正则表达式匹配)。特殊文件格式如Out
- 【蓝桥】枚举
CH3_CH2_CHO
QuantumCoffee算法c++枚举蓝桥杯
1、引言在算法领域中,枚举算法是一种基础且直观的解题思路。无论是新手入门还是复杂问题的简化处理,它都扮演着重要角色。本文将结合枚举算法的核心思想、解空间类型以及循环枚举的实践步骤,带大家深入理解这一经典算法。2、核心2.1算法思想枚举算法的核心是穷举所有可能的情况。它将问题解空间中的每个可能解逐一枚举,通过验证和比较,找到满足问题条件的最优解或所有解。例如,在寻找数字组合的问题中,枚举算法会遍历所
- 算法学习1 求两个数的和
奋斗小小鸟cy
数据结构与算法算法java
本文翻译自:https://leetcode.com问题:给定一个整数数组,返回两个数字的索引,使它们相加到一个特定的目标。您可以假设每个输入都只有一个解决方案,而您可能不会使用相同的元素两次。例:给定nums=[2,7,11,15],target=9,因为nums[0]+nums[1]=2+7=9,返回[0,1]。答案:方案一:穷举法穷举法很简单,循环nums里面的每一个元素x,查找是否有另一个
- 笔记:代码随想录算法训练营day42:LeetCode188.买卖股票的最佳时机IV,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费
jingjingjing1111
笔记动态规划leetcode
学习资料:代码随想录感觉还没有把这个股票的递归变成直觉的东西.anyway,每一天的各种状态都是从上一天的各种状态中优化出来的,到最后的再选择一个最大的状态,应该是没啥问题,不会有漏掉的情况188.买卖股票的最佳时机IV力扣题目链接思路:和上一题差不多,限制上买卖次数倒比不限制买卖次数复杂了不少要给上一题的代码套个循环classSolution{public:intmaxProfit(intk,v
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- AI Agent在企业预算管理与成本控制中的应用
SuperAGI2025
DeepSeek人工智能大数据ai
AIAgent在企业预算管理与成本控制中的应用关键词:AIAgent、企业预算管理、成本控制、机器学习、预测模型、优化算法摘要:本文深入探讨了AIAgent在企业预算管理与成本控制中的应用。通过详细的背景介绍、核心概念解析、算法原理讲解和实际案例剖析,本文展示了AIAgent如何通过智能预测和优化算法,为企业带来更高的效率和精确度,从而实现成本控制和预算优化的目标。背景介绍核心概念AIAgent:
- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 计算机考研408数据结构大题高频考点与真题解析
竹木有心
数据结构
一、线性表(顺序表与链表)1.1顺序表操作与算法设计高频考点:插入/删除操作的边界处理:检查下标越界与存储空间溢出子数组操作:合并、拆分、逆置等多数组综合问题:如寻找三元组最小距离真题示例:2020年408真题题目:给定三个升序数组S1、S2、S3,求所有可能的三元组(a,b,c)的最小距离D=|a−b|+|b−c|+|c−a|。解法:算法思想:三指针法遍历数组,每次移动当前最小元素的指针核心代码
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- Akamai 与 AWS 风控分析与绕过技术探讨
qq_33253945
aws云计算爬虫网络爬虫算法安全
1.引言本文将深入探讨Akamai风控和AWS签名算法的技术细节。请注意,文中内容仅供技术研究和学习交流使用。2.Akamai风控核心要素Akamai的主要风控机制包含以下几个关键点:Canvas指纹识别每个浏览器环境都有其独特的Canvas指纹这是风控系统的核心识别方式之一用户行为分析鼠标移动轨迹检测操作行为模式识别相关参数的实时计算与验证JA3指纹TLS握手特征识别客户端环境特征分析代码执行流
- 算法训练:2.移除元素(快慢指针)
貝森不想秃
小白算法训练算法
算法原题:27.移除元素-力扣(LeetCode)移除数组元素移除一个元素时,需要将该元素之后的所有元素依次向前移动一个位置,以填补被移除元素的空位,对于静态数组来说,数组的长度是不会发生变化的,多余的数组元素不进行处理:例如{1,2,3,4}移除3,数组会得到{1,2,4,4}解题思路暴力移除通过for循环嵌套,访问到目标元素就将其后面的所有元素向前移动一格,循环往复快慢指针(本节主要内容)快慢
- 芒格的双轨分析:结合定性和定量的投资方法
SuperAGI2025
DeepSeekai
芒格的"双轨分析":结合定性和定量的投资方法关键词:芒格、双轨分析、定性分析、定量分析、投资方法、系统分析摘要:芒格的“双轨分析”是一种结合定性和定量分析的投资方法,旨在通过综合分析企业的内在价值和市场趋势,帮助投资者做出更科学的投资决策。本文将详细介绍双轨分析的背景、核心概念、算法原理、系统架构及实际应用,帮助读者全面理解并掌握这一方法。第一部分:芒格的双轨分析基础第1章:投资分析的演变与双轨分
- 基于AI智能算法的无人机城市综合治理
GeoSaaS
智慧城市人工智能无人机科技大数据智慧城市gis
随着人工智能技术的飞速发展,无人机技术与AI的结合正在成为城市治理的新趋势。无人机不仅能够提供城市上空的高清视角,而且通过搭载的智能算法,可以实现自动化的监控、分析和响应,极大地提升了城市管理的效率和智能化水平。无人机技术在城市治理中的应用无人机技术在城市治理中的应用主要集中在以下几个方面:违法建筑监测:无人机可以快速覆盖大范围区域,自动识别并记录违建情况,提高执法效率。环卫垃圾识别:通过AI算法
- 自然语言处理:文本聚类
老赵爱学习
python文本聚类k均值聚类算法高斯混合模型的最大期望值算法无监督朴素贝叶斯模型自然语言处理人工智能
介绍大家好,博主又来和大家分享自然语言处理领域的知识了。今天给大家分享的内容是自然语言处理中的文本聚类。文本聚类在自然语言处理领域占据着重要地位,它能将大量无序的文本按照内容的相似性自动划分成不同的类别,极大地提高了文本处理和信息提取的效率。就好比在一个大型图书馆中,文本聚类能够像智能管理员一样,把各种书籍按照主题分类摆放,方便读者快速找到所需资料。而实现文本聚类的方法有很多,其中k均值聚类算法、
- 【工厂老板必看】智能切割算法帮您省 30% 原材料!附真实案例——一维下料问题算法、cad c#二次开发
山水CAD筑梦人
CADC#二次开发算法
一、行业痛点:原材料浪费有多严重?现象:传统人工排料导致大量边角料,例如:某钢材厂每月因切割不合理损失15万元木材加工厂平均浪费率高达25%核心问题:无法兼顾切割数量与材料利用率人工计算耗时且容易出错二、解决方案:贪心算法和遗传算法切割优化系统技术原理(通俗解释):用贪心算法和遗传算法通过编程,自动生成最优切割方案,比人工排料效率高100倍以上!核心优势:省材料:原材料总根数减少20%-40%降成
- 贪心算法——c#
山水CAD筑梦人
C#学习笔记贪心算法算法
贪心算法通俗解释贪心算法是一种"每一步都选择当前最优解"的算法策略。它不关心全局是否最优,而是通过局部最优的累积来逼近最终解。优点是简单高效,缺点是可能无法得到全局最优解。一句话秒懂自动售货机找零钱:用最少数量的硬币凑出指定金额。比如找零198美分,它会优先用25美分的大硬币,不够再用小的,直到凑够金额。背景故事想象你在加拿大超市当收银员(CAD场景):顾客买了东西你需要快速找出零钱198分收银台
- 智能车辆控制技术:MPC与轨迹规划实战项目
柚木i
本文还有配套的精品资源,点击获取简介:本压缩包集合了车辆转向控制与轨迹规划的MATLAB代码,包含模型预测控制(MPC)策略、MPT工具箱应用、车辆动力学模型构建、轨迹规划实现、mp-QP算法应用及MATLAB编程实践。旨在通过源码分析,提供智能车辆控制技术的深入学习与研究平台,涉及横向和纵向运动控制、系统模型的定义、控制策略的制定及仿真流程。1.模型预测控制(MPC)基础与应用模型预测控制(MP
- Manus详解,看这一篇就够了
程序员鑫港
langchain数据库人工智能AI大模型Agent智能体
Monica公司发布了AIAgent智能体产品——Manus,是一款具备突破性技术的通用型AI代理,根据Manus官网(https://manus.im)技术白皮书和网络公开资料,整理Manus核心技术和应用信息如下,欢迎讨论。技术架构多智能体协作系统Manus采用规划代理、执行代理和验证代理的分工机制,模拟人类工作流程,提升复杂任务的处理效率。规划代理采用蒙特卡洛树搜索(MCTS)算法优化任务拆
- 多目标优化算法之NSGA-II、NSGA-III(附Matlab免费代码)
优化算法侠Swarm-Opti
智能优化算法算法matlab开发语言优化算法NSGA
引言NSGA-II和NSGA-III都是非支配排序遗传算法的变种,用于解决多目标优化问题,但它们在多个方面存在差异。相同点基本框架相似:两者都基于遗传算法的框架,包括初始化种群、非支配排序、选择、交叉和变异等操作非支配排序:都采用非支配排序技术,将种群中的个体划分为不同的前沿,识别非支配解集不同点适用目标数量不同:NSGA-II:适用于相对较少的目标数量,通常在2到4个目标之间,在处理较少目标的问
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交