Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
Solution1:
做两次二分就可以了,第一次二分找出最左边的边界,第二次二分找出最右边的边界,这样,无论平均还是最差都是O(lgn)。
public int[] searchRange(int[] A, int target) { int[] range = {-1, -1}; if(A == null || A.length == 0) return range; int l = 0; int r = A.length-1; // Search for lower bound while(l<=r) { int m = (l+r)/2; if(A[m]<target) { l=m+1; } else { r=m-1; } } // If the target is not found, return (-1, -1) if(l>=A.length || A[l] != target) return range; range[0] = l; // Search for upper bound r = A.length-1; while(l<=r) { // A[l ~ r] >= target int m = (l+r)/2; // A[m] >= target if(A[m]==target) { l=m+1; } else { r=m-1; } } range[1] = r; return range; }
Solution2:
We can make target -0.5 for searching low bound and target+0. 5 for the high bound.
public int[] searchRange(int[] A, int target) { if (A==null) return null; int[] range = {-1,-1}; // Be care for there , low>=A.length must be check first or // there may be a out of boundary exception cause // the binarySearch function in this question return low instead of null // if the target are not in the array int low = binarySearch(A,target-0.5); if (low >= A.length || A[low]!=target){ return range; } range[0] = low; range[1] = binarySearch(A,target+0.5)-1; return range; } public int binarySearch(int[] A, double t){ int low = 0, high = A.length - 1; while(low <= high){ int m = (low + high) / 2; if(A[m] == t) return m; if(A[m] > t) high = m - 1; else low = m + 1; } return low; }
Solution 3:
public int[] searchRange(int[] nums, int target) { int left = getLeftIndex(nums, target); int right = getRightIndex(nums, target); return new int[]{left, right}; } private int getLeftIndex(int[] a, int t) { int start = 0, end = a.length-1; while(start <= end) { int mid = (start + end) / 2; if((mid == 0 || a[mid-1] < t) && a[mid] == t) { return mid; } else if(a[mid] < t) { start = mid + 1; } else { end = mid - 1; } } return -1; } private int getRightIndex(int[] a, int t) { int start = 0, end = a.length-1; while(start <= end) { int mid = (start + end) / 2; if((mid == a.length-1 || a[mid+1] > t) && a[mid] == t) { return mid; } else if(a[mid] > t) { end = mid - 1; } else { start = mid + 1; } } return -1; }
Reference:
http://blog.csdn.net/linhuanmars/article/details/20593391
http://rleetcode.blogspot.com/2014/02/search-for-range-java.html
http://www.geeksforgeeks.org/count-number-of-occurrences-in-a-sorted-array/