CUDA中grid、block、thread、warp与SM、SP的关系

首先概括一下这几个概念。其中SM(Streaming Multiprocessor)SP(streaming Processor)是硬件层次的,其中一个SM可以包含多个SP。thread是一个线程,多个thread组成一个线程块block,多个block又组成一个线程网格grid。

现在就说一下一个kenerl函数是怎么执行的。一个kernel程式会有一个grid,grid底下又有数个block,每个block是一个thread群组。在同一个block中thread可以通过共享内存(shared memory)来通信,同步。而不同block之间的thread是无法通信的。

CUDA的设备在实际执行过程中,会以block为单位。把一个个block分配给SM进行运算;而block中的thread又会以warp(线程束)为单位,对thread进行分组计算。目前CUDA的warp大小都是32,也就是说32个thread会被组成一个warp来一起执行。同一个warp中的thread执行的指令是相同的,只是处理的数据不同。

基本上warp 分组的动作是由SM 自动进行的,会以连续的方式来做分组。比如说如果有一个block 里有128 个thread 的话,就会被分成四组warp,第0-31 个thread 会是warp 1、32-63 是warp 2、64-95是warp 3、96-127 是warp 4。而如果block 里面的thread 数量不是32 的倍数,那他会把剩下的thread独立成一个warp;比如说thread 数目是66 的话,就会有三个warp:0-31、32-63、64-65 。由于最后一个warp 里只剩下两个thread,所以其实在计算时,就相当于浪费了30 个thread 的计算能力;这点是在设定block 中thread 数量一定要注意的事!

一个SM 一次只会执行一个block 里的一个warp,但是SM 不见得会一次就把这个warp 的所有指令都执行完;当遇到正在执行的warp 需要等待的时候(例如存取global memory 就会要等好一段时间),就切换到别的warp来继续做运算,借此避免为了等待而浪费时间。所以理论上效率最好的状况,就是在SM 中有够多的warp 可以切换,让在执行的时候,不会有「所有warp 都要等待」的情形发生;因为当所有的warp 都要等待时,就会变成SM 无事可做的状况了。

实际上,warp 也是CUDA 中,每一个SM 执行的最小单位;如果GPU 有16 组SM 的话,也就代表他真正在执行的thread 数目会是32*16 个。不过由于CUDA 是要透过warp 的切换来隐藏thread 的延迟、等待,来达到大量平行化的目的,所以会用所谓的active thread 这个名词来代表一个SM 里同时可以处理的thread 数目。而在block 的方面,一个SM 可以同时处理多个thread block,当其中有block 的所有thread 都处理完后,他就会再去找其他还没处理的block 来处理。假设有16 个SM、64 个block、每个SM 可以同时处理三个block 的话,那一开始执行时,device 就会同时处理48 个block;而剩下的16 个block 则会等SM 有处理完block 后,再进到SM 中处理,直到所有block 都处理结束。

你可能感兴趣的:(thread,线程,CUDA,kernel)