How to improve Java's I/O performance( 提升 java i/o 性能)

原文:http://www.javaworld.com/article/2077523/build-ci-sdlc/java-tip-26--how-to-improve-java-s-i-o-performance.html


JDK 1.0.2 的 java.io 包暴露了很多I/O性能问题,这里将介绍一个优化方案,附加一个关闭同步的方法。
Java的I/O性能曾经是很多Java应用的瓶颈,主要原因就是JDK1.0.2的java.io包的不良设计和实现。关键问题是缓冲,绝大多数java.io中的类都未做缓冲。事实上,只有BufferedInputStream 和 BufferedOutputStream两个类做了缓冲,但他们提供的方法有限。例如,在大多数涉及文件操作的应用中,你需要逐行解析一个文件。但是唯一提供了readLine方法的类是DataInputStream,可是它却没有内部缓冲。DataInputStream的readLine方法其实是从输入流中逐个读取字符直到遇到 “n” 或 “rn”字符。每个读取字符操作都涉及到一次文件I/O。这在读取一个大文件时是极其低效的。没有缓冲的情况下一个5兆字节的文件就需要至少5百万次读取字符的文件I/O操作。
新版本JDK1.1通过增加一套Reader、Writer类改进了I/O性能。在大文件读取中BufferedReader的readLine方法至少比以前的DataInputStream快10到20倍。不幸的是,JDK1.1没有解决所有的性能问题。比如,当你想解析一个大文件但是又不希望全部读到内存中时,需要使用到RandomAccessFile类,但是在JDK1.1里它也没有做缓冲,也没有提供其他类似的Reader类。


How to tackle the I/O problem

To tackle the problem of inefficient file I/O, we need a buffered RandomAccessFile class. A new class is derived from the RandomAccessFile class, in order to reuse all the methods in it. The new class is named Braf(Bufferedrandomaccessfile).
如何解决I/O难题?
解决低效的文件I/O,我们需要一个提供缓冲的RandomAccessFile类。有一个类继承自RandomAccessFile,并且重用了RandomAccessFile中的所有方法,它就是Braf(Bufferedrandomaccessfile)。

 

 public class Braf extends RandomAccessFile {
  }

出于效率原因,我们定义了一个字节缓冲区而不是字符缓冲区。使用buf_end、buf_pos和real_pos三个变量来记录缓冲区上有用的位置信息。
For efficiency reasons, we define a byte buffer instead of char buffer. The variables buf_end, buf_pos, and real_pos are used to record the effective positions on the buffer:

  byte buffer[];
  int buf_end = 0;
  int buf_pos = 0;
  long real_pos = 0;

增加了一个新的构造函数,里面多了一个指定缓冲区大小的参数:
A new constructor is added with an additional parameter to specify the size of the buffer:
 

public Braf(String filename, String mode, int bufsize) 
   throws IOException{
    super(filename,mode);
    invalidate();
    BUF_SIZE = bufsize;
    buffer = new byte[BUF_SIZE];    
  }

新写了一个read方法,它永远优先读取缓冲区。它覆盖了原来的read方法,在缓冲区读完时,会调用fillBuffer,它将调用父类的read方法读取字节,填充到缓冲区中。私有函数invalidate被用来判断缓冲区中是否包含合法数据,它在seek方法被调用、文件指针可能被定位到缓冲区之外时是非常有必要的。

The new read method is written such that it always reads from the buffer first. It overrides the native read method in the original class, which is never engaged until the buffer has run out of room. In that case, the fillBuffer method is called to fill in the buffer. In fillBuffer, the original read is invoked. The private method invalidateis used to indicate that the buffer no longer contains valid contents. This is necessary when the seek method moves the file pointer out of the buffer.

public final int read() throws IOException{
    if(buf_pos >= buf_end) {
       if(fillBuffer() < 0)
       return -1;
    }
    if(buf_end == 0) {
         return -1;
    } else {
         return buffer[buf_pos++];
    }
  }
  private int fillBuffer() throws IOException {
    int n = super.read(buffer, 0, BUF_SIZE);
    if(n >= 0) {
      real_pos +=n;
      buf_end = n;
      buf_pos = 0;
    }
    return n;
  }
  private void invalidate() throws IOException {
    buf_end = 0;
    buf_pos = 0;
    real_pos = super.getFilePointer();
  }

另一个参数化的读取方法也被重载,代码如下。如果缓冲足够的话,它就会调用System.arraycopy 方法直接从缓冲中拷贝一部分到用户区。这个也能显著提升性能,因为getNextLine方法中read()方法被大量使用,getNextLine也是readLine的替代品。

The other parameterized read method also is overridden. The code for the new read is listed below. If there is enough buffer, it will simply call System.arraycopy to copy a portion of the buffer directly into the user-provided area. This presents the most significant performance gain because the read method is heavily used in the getNextLine method, which is our replacement for readLine.


public int read(byte b[], int off, int len) throws IOException {
   int leftover = buf_end - buf_pos;
   if(len <= leftover) {
             System.arraycopy(buffer, buf_pos, b, off, len);
        buf_pos += len;
        return len;
   }
   for(int i = 0; i < len; i++) {
      int c = this.read();
      if(c != -1)
         b[off+i] = (byte)c;
      else {
         return i;
      }
   }
   return len;
  }

原来的getFilePointer和seek方法也需要被重载来配合缓冲。大多数情况下,两个方法只会简单的在缓冲中进行操作

The original methods getFilePointer and seek need to be overridden as well in order to take advantage of the buffer. Most of time, both methods will simply operate inside the buffer.


public long getFilePointer() throws IOException{
    long l = real_pos;
    return (l - buf_end + buf_pos) ;
  }
  public void seek(long pos) throws IOException {
    int n = (int)(real_pos - pos);
    if(n >= 0 && n <= buf_end) {
      buf_pos = buf_end - n;
    } else {
      super.seek(pos);
      invalidate();
    }
  }

最重要的,一个新的方法,getNextLine,被加入来替换readLine。我们不能简单的重载readLine,因为它是final定义的。getNextLine方法首先需要确定buffer是否有未读数据。如果没有,缓冲区需要被填满。读取时如果遇到换行符,新的一行就从缓冲区中读出转换为String对象。否则,将继续调用read方法逐个读取字节。尽管后面部分的代码和原来的readLine很像,但是由于read方法做了缓冲,它的性能也要优于以前。

Most important, a new method, getNextLine, is added to replace the readLine method. We can not simply override the readLine method because it is defined as final in the original class. The getNextLine method first decides if the buffer still contains unread contents. If it doesn't, the buffer needs to be filled up. If the new line delimiter can be found in the buffer, then a new line is read from the buffer and converted into String. Otherwise, it will simply call the read method to read byte by byte. Although the code of the latter portion is similar to the original readLine, performance is better here because the read method is buffered in the new class


/**
   * return a next line in String 
   */
  public final String getNextLine() throws IOException {
   String str = null;
   if(buf_end-buf_pos <= 0) {
      if(fillBuffer() < 0) {
                throw new IOException("error in filling buffer!");
      }
   }
   int lineend = -1;
   for(int i = buf_pos; i < buf_end; i++) {
        if(buffer[i] == '\n') {
         lineend = i;
          break;
          }
   }
   if(lineend < 0) {
        StringBuffer input = new StringBuffer(256);
        int c;
             while (((c = read()) != -1) && (c != '\n')) {
                 input.append((char)c);
        }
        if ((c == -1) && (input.length() == 0)) {
          return null;
        }
        return input.toString();
   }
   if(lineend > 0 && buffer[lineend-1] == '\r')
        str = new String(buffer, 0, buf_pos, lineend - buf_pos -1);
   else str = new String(buffer, 0, buf_pos, lineend - buf_pos);
   buf_pos = lineend +1;
   return str;
   }

在Braf类的帮助下,我们在逐行读取大文件时至少能得到高过RandomAccessFile类25倍的性能提升。这个方案也应用在其他I/O操作密集的场景中。
关闭同步:额外的提示
除了I/O,另一个拖累Java性能的因素是同步,大体上,同步方法的成本大约是普通方法的6倍。如果你在写一个没有多线程的应用,或者是一个应用中肯定只会单线程运行的部分,你不需要做任何同步声明。当前,Java还没有机制来关闭同步。一个非正规的方法是拿到源码,去掉同步声明然后创建一个新类。例如,BufferedInputStream中两个read方法都是同步的,因为其他I/O方法都依赖它们。你可以在JavaSoft的JDK 1.1中拷贝BufferedInputStream.java 源码,创建一个新的NewBIS类,删掉同步声明,重新编译

With the new Braf class, we have experienced at least 25 times performance improvement over RandomAccessFile when a large file needs to be parsed line by line. The method described here also applies to other places where intensive file I/O operations are involved.
Synchronization turn-off: An extra tip
Another factor responsible for slowing down Java's performance, besides the I/O problem discussed above, is the synchronized statement. Generally, the overhead of a synchronized method is about 6 times that of a conventional method. If you are writing an application without multithreading -- or a part of an application in which you know for sure that only one thread is involved -- you don't need anything to be synchronized. Currently, there is no mechanism in Java to turn off synchronization. A simple trick is to get the source code of a class, remove synchronized statements, and generate a new class. For example, in BufferedInputStream, both read methods are synchronized, whereas all other I/O methods depend on them. You can simply rename the class to NewBIS,for example, copy the source code from BufferedInputStream.java provided by JavaSoft's JDK 1.1, remove synchronized statements from NewBIS.java, and recompile NewBIS.

你可能感兴趣的:(java,性能,IO)