我们先来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,如下图:
然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):
然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:
然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。
优点:
1.运算效率高,不许进行比较和移位;
2.占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。
缺点:
所有的数据不能重复。即不可对重复的数据进行排序和查找。
算法思想比较简单,但关键是如何确定十进制的数映射到二进制bit位的map图。
申请一个int一维数组,那么可以当作为列为32位的二维数组,
| 32位 |
int a[0] |0000000000000000000000000000000000000|
int a[1] |0000000000000000000000000000000000000|
………………
int a[N] |0000000000000000000000000000000000000|
例如十进制0,对应在a[0]所占的bit为中的第一位: 00000000000000000000000000000001
0-31:对应在a[0]中
i =0 00000000000000000000000000000000
temp=0 00000000000000000000000000000000
answer=1 00000000000000000000000000000001
i =1 00000000000000000000000000000001
temp=1 00000000000000000000000000000001
answer=2 00000000000000000000000000000010
i =2 00000000000000000000000000000010
temp=2 00000000000000000000000000000010
answer=4 00000000000000000000000000000100
i =30 00000000000000000000000000011110
temp=30 00000000000000000000000000011110
answer=1073741824 01000000000000000000000000000000
i =31 00000000000000000000000000011111
temp=31 00000000000000000000000000011111
answer=-2147483648 10000000000000000000000000000000
32-63:对应在a[1]中
i =32 00000000000000000000000000100000
temp=0 00000000000000000000000000000000
answer=1 00000000000000000000000000000001
i =33 00000000000000000000000000100001
temp=1 00000000000000000000000000000001
answer=2 00000000000000000000000000000010
i =34 00000000000000000000000000100010
temp=2 00000000000000000000000000000010
answer=4 00000000000000000000000000000100
i =61 00000000000000000000000000111101
temp=29 00000000000000000000000000011101
answer=536870912 00100000000000000000000000000000
i =62 00000000000000000000000000111110
temp=30 00000000000000000000000000011110
answer=1073741824 01000000000000000000000000000000
i =63 00000000000000000000000000111111
temp=31 00000000000000000000000000011111
answer=-2147483648 10000000000000000000000000000000
浅析上面的对应表,分三步:
1.求十进制0-N对应在数组a中的下标:
十进制0-31,对应在a[0]中,先由十进制数n转换为与32的余可转化为对应在数组a中的下标。比如n=24,那么 n/32=0,则24对应在数组a中的下标为0。又比如n=60,那么n/32=1,则60对应在数组a中的下标为1,同理可以计算0-N在数组a中的下标。
2.求0-N对应0-31中的数:
十进制0-31就对应0-31,而32-63则对应也是0-31,即给定一个数n可以通过模32求得对应0-31中的数。
3.利用移位0-31使得对应32bit位为1.
找到对应0-31的数为M, 左移M位:即2^M. 然后置1.
由此我们计算10000000个bit占用的空间:
1byte = 8bit
1kb = 1024byte
1mb = 1024kb
占用的空间为:10000000/8/1024/1024mb。
大概为1mb多一些。
1)可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下。
2)去重数据而达到压缩数据
c语言实现:
注明: 左移n位就是乘以2的n次方,右移n位就是除以2的n次方
解析本例中的void set(int i) { a[i>>SHIFT] |= (1<<(i & MASK)); }
1) i>>SHIFT:
其中SHIFT=5,即i右移5为,2^5=32,相当于i/32,即求出十进制i对应在数组a中的下标。比如i=20,通过i>>SHIFT=20>>5=0 可求得i=20的下标为0;
2) i & MASK:
其中MASK=0X1F,十六进制转化为十进制为31,二进制为0001 1111,i&(0001 1111)相当于保留i的后5位。
比如i=23,二进制为:0001 0111,那么
0001 0111
& 0001 1111 = 0001 0111 十进制为:23
比如i=83,二进制为:0000 0000 0101 0011,那么
0000 0000 0101 0011
& 0000 0000 0001 0000 = 0000 0000 0001 0011 十进制为:19
i & MASK相当于i%32。
3) 1<<(i & MASK)
相当于把1左移 (i & MASK)位。
比如(i & MASK)=20,那么i<<20就相当于:
0000 0000 0000 0000 0000 0000 0000 0001 << 20
=0000 0000 0001 0000 0000 0000 0000 0000
注意上面 “|=”.
在博文:位运算符及其应用 提到过这样位运算应用:
将int型变量a的第k位清0,即a=a&~(1<<k)
将int型变量a的第k位置1, 即a=a|(1<<k)
这里的将 a[i/32] |= (1<<M)); 第M位置1 .
即实现上面提到的三步:
1.求十进制0-N对应在数组a中的下标: n/32
2.求0-N对应0-31中的数: N%32=M
3.利用移位0-31使得对应32bit位为1: 1<<M,并置1;
php实现是一样的:
0=11000000000000000000000000001110
1=1000001000000000000000010
6=10000000
32位表示,实际结果一目了然了,看看1,2,3,30,31, 33,50,56,199数据所在的具体位置:
31 30 3 2 1
0= 1 1 00 0000 0000 0000 0000 0000 0000 1 1 1 0
56 50 33
1= 0000 0001 0000 0100 0000 0000 0000 0010
199
6= 0000 0000 0000 0000 0000 0000 1000 0000
【问题实例】
已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)实现: