java并发之Lock

从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

 1.Lock

  首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

1
2
3
4
5
6
7
8
public  interface  Lock {
     void  lock();
     void  lockInterruptibly()  throws  InterruptedException;
     boolean  tryLock();
     boolean  tryLock( long  time, TimeUnit unit)  throws  InterruptedException;
     void  unlock();
     Condition newCondition();
}

   下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

  在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

  首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

  由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

1
2
3
4
5
6
7
8
9
Lock lock = ...;
lock.lock();
try {
     //处理任务
} catch (Exception ex){
     
} finally {
     lock.unlock();    //释放锁
}

  tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

  tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

  所以,一般情况下通过tryLock来获取锁时是这样使用的:

1
2
3
4
5
6
7
8
9
10
11
12
Lock lock = ...;
if (lock.tryLock()) {
      try {
          //处理任务
      } catch (Exception ex){
         
      } finally {
          lock.unlock();    //释放锁
     
} else  {
     //如果不能获取锁,则直接做其他事情
}

   lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

  由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

  因此lockInterruptibly()一般的使用形式如下:

1
2
3
4
5
6
7
8
9
public  void  method()  throws  InterruptedException {
     lock.lockInterruptibly();
     try  {  
      //.....
     }
     finally  {
         lock.unlock();
     }  
}

  注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

  因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

  而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

  2.ReentrantLock

  ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

  例子1,lock()的正确使用方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public  class  Test {
     private  ArrayList<Integer> arrayList =  new  ArrayList<Integer>();
     public  static  void  main(String[] args)  {
         final  Test test =  new  Test();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
     }  
     
     public  void  insert(Thread thread) {
         Lock lock =  new  ReentrantLock();     //注意这个地方
         lock.lock();
         try  {
             System.out.println(thread.getName()+ "得到了锁" );
             for ( int  i= 0 ;i< 5 ;i++) {
                 arrayList.add(i);
             }
         catch  (Exception e) {
             // TODO: handle exception
         } finally  {
             System.out.println(thread.getName()+ "释放了锁" );
             lock.unlock();
         }
     }
}

   各位朋友先想一下这段代码的输出结果是什么?

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

  也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

  知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public  class  Test {
     private  ArrayList<Integer> arrayList =  new  ArrayList<Integer>();
     private  Lock lock =  new  ReentrantLock();     //注意这个地方
     public  static  void  main(String[] args)  {
         final  Test test =  new  Test();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
     }  
     
     public  void  insert(Thread thread) {
         lock.lock();
         try  {
             System.out.println(thread.getName()+ "得到了锁" );
             for ( int  i= 0 ;i< 5 ;i++) {
                 arrayList.add(i);
             }
         catch  (Exception e) {
             // TODO: handle exception
         } finally  {
             System.out.println(thread.getName()+ "释放了锁" );
             lock.unlock();
         }
     }
}

   这样就是正确地使用Lock的方法了。

  例子2,tryLock()的使用方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public  class  Test {
     private  ArrayList<Integer> arrayList =  new  ArrayList<Integer>();
     private  Lock lock =  new  ReentrantLock();     //注意这个地方
     public  static  void  main(String[] args)  {
         final  Test test =  new  Test();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
         
         new  Thread(){
             public  void  run() {
                 test.insert(Thread.currentThread());
             };
         }.start();
     }  
     
     public  void  insert(Thread thread) {
         if (lock.tryLock()) {
             try  {
                 System.out.println(thread.getName()+ "得到了锁" );
                 for ( int  i= 0 ;i< 5 ;i++) {
                     arrayList.add(i);
                 }
             catch  (Exception e) {
                 // TODO: handle exception
             } finally  {
                 System.out.println(thread.getName()+ "释放了锁" );
                 lock.unlock();
             }
         else  {
             System.out.println(thread.getName()+ "获取锁失败" );
         }
     }
}

   输出结果:

Thread-0得到了锁
Thread-1获取锁失败
Thread-0释放了锁

  例子3,lockInterruptibly()响应中断的使用方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public  class  Test {
     private  Lock lock =  new  ReentrantLock();   
     public  static  void  main(String[] args)  {
         Test test =  new  Test();
         MyThread thread1 =  new  MyThread(test);
         MyThread thread2 =  new  MyThread(test);
         thread1.start();
         thread2.start();
         
         try  {
             Thread.sleep( 2000 );
         catch  (InterruptedException e) {
             e.printStackTrace();
         }
         thread2.interrupt();
     }  
     
     public  void  insert(Thread thread)  throws  InterruptedException{
         lock.lockInterruptibly();    //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
         try  {  
             System.out.println(thread.getName()+ "得到了锁" );
             long  startTime = System.currentTimeMillis();
             for (    ;     ;) {
                 if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                     break ;
                 //插入数据
             }
         }
         finally  {
             System.out.println(Thread.currentThread().getName()+ "执行finally" );
             lock.unlock();
             System.out.println(thread.getName()+ "释放了锁" );
         }  
     }
}
 
class  MyThread  extends  Thread {
     private  Test test =  null ;
     public  MyThread(Test test) {
         this .test = test;
     }
     @Override
     public  void  run() {
         
         try  {
             test.insert(Thread.currentThread());
         catch  (InterruptedException e) {
             System.out.println(Thread.currentThread().getName()+ "被中断" );
         }
     }
}

  运行之后,发现thread2能够被正确中断。

  3.ReadWriteLock

  ReadWriteLock也是一个接口,在它里面只定义了两个方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public  interface  ReadWriteLock {
     /**
      * Returns the lock used for reading.
      *
      * @return the lock used for reading.
      */
     Lock readLock();
 
     /**
      * Returns the lock used for writing.
      *
      * @return the lock used for writing.
      */
     Lock writeLock();
}

   一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

  4.ReentrantReadWriteLock

  ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

  下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

  假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public  class  Test {
     private  ReentrantReadWriteLock rwl =  new  ReentrantReadWriteLock();
     
     public  static  void  main(String[] args)  {
         final  Test test =  new  Test();
         
         new  Thread(){
             public  void  run() {
                 test.get(Thread.currentThread());
             };
         }.start();
         
         new  Thread(){
             public  void  run() {
                 test.get(Thread.currentThread());
             };
         }.start();
         
     }  
     
     public  synchronized  void  get(Thread thread) {
         long  start = System.currentTimeMillis();
         while (System.currentTimeMillis() - start <=  1 ) {
             System.out.println(thread.getName()+ "正在进行读操作" );
         }
         System.out.println(thread.getName()+ "读操作完毕" );
     }
}

   这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕

  而改成用读写锁的话:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public  class  Test {
     private  ReentrantReadWriteLock rwl =  new  ReentrantReadWriteLock();
     
     public  static  void  main(String[] args)  {
         final  Test test =  new  Test();
         
         new  Thread(){
             public  void  run() {
                 test.get(Thread.currentThread());
             };
         }.start();
         
         new  Thread(){
             public  void  run() {
                 test.get(Thread.currentThread());
             };
         }.start();
         
     }  
     
     public  void  get(Thread thread) {
         rwl.readLock().lock();
         try  {
             long  start = System.currentTimeMillis();
             
             while (System.currentTimeMillis() - start <=  1 ) {
                 System.out.println(thread.getName()+ "正在进行读操作" );
             }
             System.out.println(thread.getName()+ "读操作完毕" );
         finally  {
             rwl.readLock().unlock();
         }
     }
}

   此时打印的结果为:

复制代码
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕
复制代码

  说明thread1和thread2在同时进行读操作。

  这样就大大提升了读操作的效率。

  不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

  如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

  关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档

参考:http://www.cnblogs.com/dolphin0520/p/3923167.html


你可能感兴趣的:(java并发之Lock)