- Java策略模式详解
nlog3n
设计模式Java学习java策略模式bash
策略模式详解一、模式定义策略模式(StrategyPattern)属于行为型模式,它定义了一系列算法,并将每个算法封装起来,使它们可以相互替换。二、核心结构1.抽象策略接口publicinterfaceStrategy{voidexecuteAlgorithm();}2.具体策略实现publicclassConcreteStrategyAimplementsStrategy{publicvoide
- EasyExcel 数据字典转换器实战:注解驱动设计
〆、挽风
android注解java
一、场景痛点与解决方案1.问题背景在Excel导入导出场景中,开发者常面临以下问题:数据可读性差:数据库存储的字典值(如1、true)直接导出时难以理解双向转换复杂:导入时需将用户输入的标签反向解析为存储值代码侵入性强:硬编码字典类型导致业务逻辑与字典管理耦合2.设计方案二、核心实现解析1.注解驱动设计代码示例@DatapublicclassConfigRespVO{//导出列声明+字典类型绑定@
- Java设计模式之模板方法模式
白 泽
Java设计模式java设计模式模板方法模式
文章目录前言一、定义二、应用场景三、基本结构四、基本使用1.抽象类/抽象模板角色2.具体子类/具体实现角色3.客户端角色总结1.优点2.缺点前言掌握模板方法模式的原理掌握模板方法模式的应用场景掌握模板方法的优缺点一、定义模板方法模式(TemplateMethod):定义一个操作中的算法骨架,而将算法的一些步骤延迟到子类中,使得子类可以不改变该算法结构的情况下重定义该算法的某些特定步骤。实际上是封装
- 科普:One-Class SVM和SVDD
人工干智能
《机器学习》支持向量机机器学习人工智能
SVM(支持向量机)算法是用于解决二分类问题的,它在样本空间(高维空间)中找一个最优超平面,使得两类数据点中离超平面最近的点(称为支持向量)到超平面的距离最大。对于极少数“坏样本”的二分类场景,我们可以换个思路:将所有样本视为一类(而不是二类),而将极少数“坏样本”视为这一类的异常。这样,用于二分类的SVM就可以改造为用于一分类的One-ClassSVM和SVDD。One-ClassSVM(单类支
- 几种常见的 A/D 转换算法示例代码,涵盖简单的加权平均法和中值滤波法
max500600
算法算法python机器学习
以下为你提供几种常见的A/D转换算法示例代码,涵盖简单的加权平均法和中值滤波法。1.加权平均法加权平均法会依据不同权重对多次采样值进行加权平均,从而得到最终的A/D转换结果。该方法能有效减少随机噪声的影响。#模拟A/D转换的加权平均法defweighted_average_adc(samples,weights):iflen(samples)!=len(weights):raiseValueErr
- 遗传算法优化支持向量机实现数据回归预测
缤纷彩色
支持向量机回归算法matlab
遗传算法优化支持向量机实现数据回归预测本文将介绍如何使用遗传算法优化支持向量机(SVM)实现数据回归预测。我们将在Matlab环境下编写代码,并提供完整的源代码。通过本文的学习,读者将了解到如何使用遗传算法优化SVM模型,以及如何将其应用于数据回归预测。首先,让我们简单介绍一下SVM。SVM是一种二分类模型,其目标是找到一个最佳的超平面将不同类别的样本分开。在数据回归预测中,我们需要将SVM用于拟
- 浅谈棋牌游戏开发流程二:后端技术选型与基础环境搭建
17源码网
服务器人工智能大数据
一、前言:客户端只是台前,后端才是幕后“指挥中心”在上一篇“客户端技术”中,我们聊到玩家看到的一切动作、动画、界面逻辑,都靠客户端去渲染和交互。但若没有后端的支撑,玩家点了“出牌”可能就像一拳打在空气里——没人理,也无法判定牌局结果。因此,在一个完整的棋牌游戏体系里,后端往往承担了最核心、最复杂的任务,包括:房间管理:谁进了哪个房间?房间是否满员?游戏逻辑:洗牌、发牌、出牌顺序、结算,这些关键规则
- 深度学习 Deep Learning 第17章 蒙特卡洛方法
odoo中国
人工智能深度学习人工智能蒙特卡洛
深度学习DeepLearning第17章蒙特卡洛方法内容概要本章深入探讨了蒙特卡洛方法及其在机器学习中的应用。蒙特卡洛方法是一类基于随机采样的算法,用于估计复杂的积分和求和问题。这些方法在机器学习中尤为重要,因为许多问题难以通过精确方法解决,需要借助随机采样来近似。本章详细介绍了蒙特卡洛方法的基本原理、重要性采样、马尔可夫链蒙特卡洛(MCMC)方法及其在深度学习中的应用。主要内容采样与蒙特卡洛方法
- 影像高精度配准 - 精度评估指标与实现方法
我喜欢就喜欢
javaandroidjavascript开发语言
影像高精度配准后,精度评估是验证算法有效性与优化算法参数的重要环节。精度评估主要通过几何精度评估与视觉验证两个方面进行。精度评估指标1.1几何精度评估指标(1)平均误差(MeanError,ME)表示所有匹配点对的平均偏移量。公式:在这里插入图片描述其中:(,)(xi,yi)是源影像的匹配点坐标。(′,′)(xi′,yi′)是目标影像中对应点的坐标。N是匹配点对的数量。(2)均方根误差(RootM
- 离线语音识别 ( 小语种国家都支持)可定制词组
微信15323794243
新唐嵌入式硬件
1产品介绍离线语音模组采用神经网络算法,支持语音识别、自学习等功能。运用此模组将AI技术赋能产品,升级改造出语音操控的智能硬件(例如风扇、台灯、空调、马桶、按摩椅、运动相机、行车记录仪等)。支持全球多种语言识别,如中文,英语,日语,韩语,俄语,西班牙语,德语,越南语等,应用市场非常广泛。2.硬件外观模组PCBA外观如图所示:模组正面有2.0mm间距10PIN卧式针座,通过10PIN排线对接主板,给
- 智慧路灯在数据采集与分析方面面临的挑战
2501_91106766
微信新浪微博微信公众平台百度
叁仟智慧路灯作为现代城市基础设施的重要组成部分,通过集成多种传感器、通信模块和智能控制算法,实现了高效节能、多功能集成和智能化管理。然而,在数据采集与分析方面,智慧路灯仍面临诸多挑战。一、技术挑战1.数据处理与分析的技术难题智慧路灯设备每天会产生大量的数据,包括但不限于车辆通行数据、环境监测数据、照明状态数据等。这些数据的高效处理不仅需要强大的计算能力,也需要复杂的算法支持。处理这些数据的技术难题
- oracle union详解,Oracle中的union和join
weixin_39650745
oracleunion详解
有时候,我们需要把很多表的查询结果给合并在一起显示或者导出,有时候呢我们又需要几张表联合一些条件进行查询,所以我们常会用到join和union语句。官方说明包含UNION[ALL],INTERSECT,MINUS三个操作符,具有相同的优先级(可以用(...)进行改变优先级),含有多个的时候,自左至右进行计算。在每个组成UNION查询的子查询中,其selectlist(选择列表)必须具有相同的数量和
- CentOS安装CMake
Android_la
CLioncentosbashlinux
文章目录1问题背景2前言3步骤1问题背景最近想玩玩CLion远程调试JDK源码,需要用到CMake,因此来安装2前言需要先看CLion支持哪个版本的CMake,再下载对应的版本。本文采用源码编译构建的方法安装。安装的步骤可以看源码包里面的READEME文件3步骤去官网下载源码包,复制下载地址,如下图所示:再CentOS找一个自己喜欢的路径,输入下面命令下载源码包:#wget后面的那个链接就是上面复
- ORACLE进阶(十二)union(all)学习总结_oracle的union all底层算法
2401_85124682
oracle学习数据库
innerjoincdeorgontb.ibkcde=cdeorg.ibkcdewhere1=1AND(FNAUTMISNULLorfnautm=0)AND(tb.FLWSTS!='3'ortb.FLWSTSISNULL)andUPPER(tb.customername)like'%'||'shq\_test\_20180302'||'%'ESCAPE'/'andtb.biztypin('1','
- NLP 面试宝典
关于NLP那些你不知道的事
大模型LLMs面试经验自然语言处理自然语言处理面试人工智能深度学习AIGC职场和发展chatgpt
介绍:本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含自然语言处理各领域的面试题积累。Github地址:https://github.com/km1994/NLP-Interview-Notes四、NLP学习算法常见面试篇4.1信息抽取常见面试篇4.1.1命名实体识别常见面试篇隐马尔科夫算法HMM常见面试篇一、基础信息介绍篇1.1什么是概率图模
- Docker教程 Dockerfile最佳实践:从入门到生产级优化指南
羊啊羊37
dockerdocker容器运维
Dockerfile最佳实践:从入门到生产级优化指南一、基础构建原则1.1选择合适的基础镜像镜像选型矩阵1.2多阶段构建模式四层构建架构二、性能优化策略2.1构建缓存利用缓存失效条件2.2层合并与精简指令合并技巧三、安全加固措施3.1权限最小化3.2漏洞扫描集成四、生产级优化方案4.1构建参数动态化4.2镜像元数据规范五、高级调试技巧5.1构建上下文优化5.2分层分析工具六、完整最佳实践示例七、常
- 【python】基于nc数据文件实现XGBoost的多分类
傻傻虎虎
机器学习python分类机器学习xgboost
基于nc数据文件实现XGBoost的多分类XGBoost介绍库下载nc文件介绍模型搭建nc文件数据读取XGBoost的使用模型源码内容XGBoost介绍XGBoost(ExtremeGradientBoosting)是一种基于梯度提升决策树的机器学习算法。它是一种高效、灵活和可扩展的技术,而且在许多机器学习竞赛中都表现出色。该算法的主要思想是通过构建多个决策树模型来逐步改进预测结果,每一次迭代都会
- C++算法八股——单调栈(含代码)
雨沐山川
算法c++开发语言
单调栈的作用是能够在一次遍历的情况下找到每个元素最左边或者最右边的第一个最大/小元素,得益于其独特的栈结构,我们可以通过手动维护一个非递增/递减的栈完成这个目的。单调栈一共分为四种情况:注意,这四种情况我们都可以从左向右遍历数组完成。有的时候为了方便计算边界情况的差值,可以压入dummy节点(例如美丽塔2),问最大我们压入INT_MAX。最小INT_MIN1.找到每个元素左边的第一个最大元素从左向
- 算法-二进制和位运算
Y.O.U..
算法c++
一.二进制(1).无符号数:无符号数是一种数据表示方式,它只表示非负整数,即没有符号位,所有的位都用来表示数值大小。在C++等编程语言中,常见的无符号类型有unsignedint、unsignedchar等。例如,一个8位的无符号整数unsignedchar可以表示范围为0到255的整数,而不像有符号的char可以表示-128到127的范围。对于一个无符号整数,可以使用除2取余法手动将其转换为二进
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- MyBatis-Plus 优雅实现数据库单字段加密存储
@郭小茶
数据库mybatisspringboot
本文将基于Mybatis-Plus讲述如何在数据的源头存储层保障其安全。我们都知道一些核心私密字段,比如说密码,手机号等在数据库层存储就不能明文存储,必须加密存储保证即使数据库泄露了也不会轻易曝光数据。一、数据库字段加解密实现1.定义加密类型枚举默认提供基于base64和AES加密算法,当然也可以自定义加密算法。publicenumAlgorithm{BASE64,AES}2.定义AES密钥和偏移
- 掌握Swift和iOS中的数据结构和算法
算法资料吧!
教程算法
掌握Swift和iOS中的数据结构和算法MasteringDataStructures&AlgorithmsinSwift&iOSMP4|视频:h264,1280×720|音频:AAC,44.1KHz,2Ch级别:全部|类型:eLearning|语言:英语|持续时间:22讲座(4小时36分钟)|大小:1.74GBMasterDataStructures&AlgorithmstoAceiOS面试和土
- c#光线追踪渲染器算法
勘察加熊人
typescriptc#算法数码相机
说明:光线追踪渲染器光线追踪是一种模拟光线物理行为的渲染技术,能够生成高度逼真的图像(如反射、折射、阴影等)。光线投射:从相机发射光线到场景。几何体相交检测:计算光线与球体的交点。材质模拟:处理玻璃的折射(如菲涅耳效应)和漫反射。阴影计算:通过光线遮挡判断生成阴影。递归追踪:支持光线反射/折射的深度递归(MAX_RAY_DEPTH)。交互式操作:通过按钮触发渲染,展示实时生成的图像。物理效果模拟:
- 模运算核心性质与算法应用:从数学原理到编程实践
EnigmaCoder
算法算法
目录前言数学性质:模运算的理论基石基本定义:余数的本质四则运算规则:保持同余性的关键编程实践:模运算的工程化技巧避免数值溢出:分步取模是关键处理负数取模:确保结果非负大数幂取模:快速幂算法组合数取模:预计算阶乘与逆元常见问题解决方案:一张表帮你避坑总结:模运算的核心价值前言大家好!我是EnigmaCoder。在算法设计与数论问题中,模运算(ModuloOperation)是处理大数、周期性问题和哈
- 机器学习的数学基础:必备的线性代数和概率论
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种利用数据训练算法来自动发现隐藏规律和模式的技术。它广泛应用于各个领域,如图像识别、自然语言处理、推荐系统等。机器学习的核心是数学模型,这些模型需要基于线性代数和概率论来构建和优化。因此,掌握机器学习的数学基础是非常重要的。在本文中,我们将从以下几个方面进行阐述:背景介绍核心概念与联系核心算法原理和具体操作步骤以及数学模型公式详细讲解具体代
- 鸿蒙next开发:TS&JS高性能编程实践及使用工具指南
蜀道山QAQ
鸿蒙harmonyos华为android鸿蒙OpenHarmony前端
本文参考业界标准,并结合应用TS&JS部分的性能优化实践经验,从应用编程指南、高性能编程实践、性能优化调试工具等维度,为应用开发者提供参考指导,助力开发者开发出高性能的应用。应用TS&JS高性能编程实践高性能编程实践,是在开发过程中逐步总结出来的一些高性能的写法和建议,在业务功能实现过程中,我们要同步思考并理解高性能写法的原理,运用到代码逻辑实现中。本文中的实践示例代码,会统一标注正例或者反例,正
- 【机器学习的定义】
Blue桃之夭夭
机器学习机器学习人工智能
机器学习的深度解析1.核心定义机器学习(MachineLearning,ML)是人工智能的一个子领域,研究如何让计算机系统从数据中自动学习规律,并利用这些规律做出预测或决策,而无需显式编程。其本质是通过算法从数据中提取模式,优化模型参数,从而提升任务表现。2.关键要素Mitchell(1997)的经典定义:“一个计算机程序在**任务(T)上的性能(P)如果随着经验(E)**而提高,就称它从经验中学
- 机器学习实践——利用SVD简化数据
还迷来
机器学习实战
SVD(奇异值分解)优点:简化数据,去除噪音,提高算法的结果缺点:数据的转换可能难以理解利用SVD,我们可以使用小得多的数据集来表示原始数据集,这样做实际上是去除了噪声和冗余信息,以此达到了优化数据、提高结果的目的。SVD的应用LSA(隐形语义分析)在LSA中,矩阵是由文档和词语组成的,当我们应用SVD时,就会构建出多个奇异值,这些奇异值就代表了文档中的主题或概念,这一特点可以用于更高效的文档搜索
- 去中心化借贷机制解析
倒霉男孩
DeFi去中心化区块链
去中心化借贷机制解析(以CompoundFinance为例)一、核心机制与市场定位去中心化借贷逻辑无需信任中介:用户通过抵押加密资产(如ETH、DAI)直接与智能合约交互,无需银行或KYC流程。算法驱动利率:利率由供需动态调整(如DAI存款APY7.58%,借款利率8%),提升市场效率。cToken机制:存款生成ERC-20标准的cToken(如cDAI),利息通过cToken增值体现,支持灵活赎
- AI 大模型应用数据中心的数据清洗架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据清洗架构》关键词:AI大模型数据清洗数据中心数据预处理异常值处理数据一致性数据质量摘要:本文深入探讨了AI大模型应用数据中心的数据清洗架构。通过分析数据清洗的重要性、面临的挑战以及核心方法与算法,本文旨在为读者提供一个全面且详细的指南。本文还将通过实际应用案例和未来展望,帮助读者理解数据清洗在AI大模型中的关键作用,并探讨其未来发展。《AI大模型应用数据中心的数据清洗
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要