基于opencv和QT的人脸(人眼)检测程序

本篇博客是在作者的上一篇博客《 基于QTopencv的摄像头(本地图片)读取并输出程序》的基础上进行开发的,利用opencv自带的分类器进行人脸或者人眼的识别。转载请注明出处http://blog.csdn.net/zyx1990412/article/details/51206867

        在上一篇博客里,我们已经实现了对摄像头或者本地图片的读取和输出功能,并且在程序中预留了进行图像处理的函数位置,本文将创建一个图像处理类,对每一帧图像进行人脸或者人眼识别,并在输出图像中框选出人脸或者人眼的位置。由于作者的程序开发不仅仅限于人脸识别的功能,所以作者使用了一个类进行图像处理,读者可以根据需要将这个类改写成函数,人脸识别的部分还是比较简单的。下面直接给出人脸(人眼)检测的函数:

#include "detectanddisplay.h"

void  detectAndDisplay( Mat &frame)
{
    string face_cascade_name = "haarcascade_mcs_eyepair_big.xml";//导入已经训练完成的样本
    CascadeClassifier face_cascade;//建立分类器
    string window_name = "camera";
    if( !face_cascade.load( face_cascade_name ) ){
        printf("[error] no cascade\n");
    }

    std::vector<Rect> faces;//用于保存检测结果的向量
    Mat frame_gray;

    cvtColor( frame, frame_gray, CV_BGR2GRAY );//转换成灰度图
    equalizeHist( frame_gray, frame_gray );//直方图均值化

    face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );//用于检测人眼的函数
    //画方框
    for( int i = 0; i < faces.size(); i++ ){
        Point centera( faces[i].x, faces[i].y);
        Point centerb( faces[i].x + faces[i].width, faces[i].y + faces[i].height );
        rectangle(frame,centera,centerb,Scalar(255,0,0));
        }

    //imshow( window_name, frame );
}

函数首先使用CascadeClassifier类建立一个分类器,然后导入opencv已经训练好的数据样本进行分类,并将结果存入vector<Rect>faces向量中。需要注意的是,"haarcascade_mcs_eyepair_big.xml"文件在opencv中的路径为\opencv\sources\data\haarcascades,运行时需要将该文件放到该项目的Debug文件夹中。Opencv自带了多种已经训练好的人脸特征数据,可以选择自己需要的文件进行替换,如图一。本文选择的分类器是人眼双目检测分类器。

基于opencv和QT的人脸(人眼)检测程序_第1张图片

图一

关于face_cascade.detectMultiScale的参数,如下所示

CascadeClassifier::detectMultiScale

对不同大小的输入图像进行物体识别,并返回一个识别到的物体的矩阵列表。

C++: void CascadeClassifier::detectMultiScale(constMat& image, vector<Rect>& objects,doublescaleFactor=1.1,int minNeighbors=3, int flags=0,Size minSize=Size(), Size maxSize=Size())

参数

·        image – 需要检测的 CV_8U 输入矩阵。

·        objects – 输出vector载体容器用于保存被识别的物体矩阵。

·        scaleFactor – 指定每张图片的缩小比例的参数。

·        minNeighbors – 指定每个候选矩阵至少包含的邻近元素个数。

·        flags – 与旧版级联分类器模型函数cvHaarDetectObjects的flags相同. 此参数不被用于新版模型。

·        minSize – 最小可能的对象的大小,小于的对象将被忽略。

·        maxSize – 最大可能的对象的大小,大于的对象将被忽略。

该函数必须对灰度图像进行处理,关于灰度转换函数和直方图灰度化函数,可以在网上找到大量资料,这里就不详细介绍了。

最终的实际检测结果如图二。

基于opencv和QT的人脸(人眼)检测程序_第2张图片

图二

你可能感兴趣的:(qt,opencv,图像处理,人脸识别,人眼识别)