DeepLearning tutorial(2)机器学习算法在训练过程中保存参数

FROM: http://blog.csdn.net/u012162613/article/details/43169019

DeepLearning tutorial(2)机器学习算法在训练过程中保存参数


@author:wepon

@blog:http://blog.csdn.net/u012162613/article/details/43169019


参考:pickle — Python object serialization、DeepLearning Getting started


一、python读取"***.pkl.gz"文件


用到python里的gzip以及cPickle模块,简单的使用代码如下,如果想详细了解可以参考上面给出的链接。

[python] view plain copy
  1. #以读取mnist.pkl.gz为例  
  2. import cPickle, gzip  
  3. f = gzip.open('mnist.pkl.gz''rb')  
  4. train_set, valid_set, test_set = cPickle.load(f)  
  5. f.close()  

其实就是分两步,先读取gz文件,再读取pkl文件。pkl文件的应用正是下文要讲的,我们用它来保存机器学习算法训练过程中的参数。


二、机器学习算法在训练过程中如何保存参数?


我们知道,机器学习算法的计算量特别大,跑起程序来少则几十分钟,多则几小时甚至几天,中间如果有什么状况(比如电脑过热重启、程序出现一些小bug...)程序就会中断,如果你没把参数定时保存下来,前面的训练就当白费了,所以很有必要在程序中加入定时保存参数的功能,这样下次训练就可以将参数初始化为上次保存下来的结果,而不是从头开始随机初始化。

那么如何保存模型参数?可以将参数深复制,或者调用python的数据永久存储cPickle模块,原理不多说,直接使用就行。(注:python里有cPickle和pickle,cPickle基于c实现,比pickle快。)

直接用一个例子来说明如何使用:

[python] view plain copy
  1. a=[1,2,3]  
  2. b={4:5,6:7}  
  3. #保存,cPickle.dump函数。/home/wepon/ab是路径,ab是保存的文件的名字,如果/home/wepon/下本来就有ab这个文件,将被覆写#,如果没有,则创建。'wb'表示以二进制可写的方式打开。dump中的-1表示使用highest protocol。  
  4. import cPickle  
  5. write_file=open('/home/wepon/ab','wb')  
  6. cPickle.dump(a,write_file,-1)  
  7. cPickle.dump(b,write_file,-1)  
  8. write_file.close()  
  9.   
  10. #读取,cPickle.load函数。  
  11. read_file=open('/home/wepon/ab','rb')  
  12. a_1=cPickle.load(read_file)  
  13. b_1=cPickle.load(read_file)  
  14. print a,b  
  15. read_file.close()  


在deeplearning算法中,因为用到GPU,经常是将参数声明为shared变量,因此必须用上get_value()、set_value,例如有w、v、u三个shared变量,使用代码如下:

[python] view plain copy
  1. import cPickle  
  2. #保存  
  3. write_file = open('path''wb')    
  4. cPickle.dump(w.get_value(borrow=True), write_file, -1)    
  5. cPickle.dump(v.get_value(borrow=True), write_file, -1)    
  6. cPickle.dump(u.get_value(borrow=True), write_file, -1)   
  7. write_file.close()  
  8.   
  9. #读取  
  10. read_file = open('path')  
  11. w.set_value(cPickle.load(read_file), borrow=True)  
  12. v.set_value(cPickle.load(read_file), borrow=True)  
  13. u.set_value(cPickle.load(read_file), borrow=True)  
  14. read_file.close()  



一个实例

下面我以一个实际的例子来说明如何在程序中加入保存参数的功能。以deeplearnig.net上的逻辑回归为例,它的代码地址:logistic_sgd.py。这个程序是将逻辑回归用于MNIST分类,程序运行过程并不会保存参数,甚至运行结束时也不保存参数。怎么做可以保存参数?

在logistic_sgd.py代码里最后面的sgd_optimization_mnist()函数里,有个while循环,里面有一句代码:

[python] view plain copy
  1. if this_validation_loss < best_validation_loss:  

这句代码的意思就是判断当前的验证损失是否小于最佳的验证损失,是的话,下面会更新best_validation_loss,也就是说当前参数下,模型比之前的有了优化,因此我们可以在这个if语句后面加入保存参数的代码:


[python] view plain copy
  1. save_params(classifier.W,classifier.b)  


save_params函数定义如下:


[python] view plain copy
  1. def save_params(param1,param2):  
  2.     import cPickle  
  3.     write_file = open('params''wb')   
  4.     cPickle.dump(param1.get_value(borrow=True), write_file, -1)  
  5.     cPickle.dump(param2.get_value(borrow=True), write_file, -1)  
  6.     write_file.close()  


当然参数的个数根据需要去定义。在logistic_sgd.py中参数只有classifier.W,classifier.b,因此这里定义为save_params(param1,param2)。



在logistic_sgd.py里我加入了save_params(classifier.W,classifier.b),运行了3次epoch,中断掉程序,在代码所在的文件夹下,多出了一个params文件,我们来看看这个文件里是什么东西:
[python] view plain copy
  1. import cPickle  
  2. f=open('params')  
  3. w=cPickle.load(f)  
  4. b=cPickle.load(f)  
  5.   
  6. #w大小是(n_in,n_out),b大小时(n_out,),b的值如下,因为MINST有10个类别,n_out=10,下面正是10个数  
  7. array([-0.0888151 ,  0.16875755, -0.03238435, -0.06493175,  0.05245609,  
  8.         0.1754718 , -0.0155049 ,  0.11216578, -0.26740651, -0.03980861])  

也就是说,params文件确实保存了我们训练过程中的参数。


那么如何用保存下来的参数来初始化我们的模型的参数呢?

在logistic_sgd.py中的class LogisticRegression(object)下,self.W和self.b本来是初始化为0的,我们可以在下面加上几行代码,这样就可以用我们保存下来的params文件来初始化参数了:

[python] view plain copy
  1. class LogisticRegression(object):  
  2.     def __init__(self, input, n_in, n_out):  
  3.         self.W = theano.shared(  
  4.             value=numpy.zeros(  
  5.                 (n_in, n_out),  
  6.                 dtype=theano.config.floatX  
  7.             ),  
  8.             name='W',  
  9.             borrow=True  
  10.         )  
  11.         self.b = theano.shared(  
  12.             value=numpy.zeros(  
  13.                 (n_out,),  
  14.                 dtype=theano.config.floatX  
  15.             ),  
  16.             name='b',  
  17.             borrow=True  
  18.         )  
  19. #!!!  
  20. #加入的代码在这里,程序运行到这里将会判断当前路径下有没有params文件,有的话就拿来初始化W和b  
  21.     if os.path.exists('params'):  
  22.         f=open('params')  
  23.         self.W.set_value(cPickle.load(f), borrow=True)  
  24.         self.b.set_value(cPickle.load(f), borrow=True)  

你可能感兴趣的:(DeepLearning tutorial(2)机器学习算法在训练过程中保存参数)