Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7
A solution set is: 
[7] 
[2, 2, 3] 

思路:

简单的回溯法(递归实现).

比如对于数组3,2,6,7,target = 7,对数组排序得到[2,3,6,7]

1、第1个数字选取2, 那么接下来就是解决从数组[2,3,6,7]选择数字且target = 7-2 = 5

2、第2个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 5-2 = 3

3、第3个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-2 = 1

4、此时target = 1小于数组中的所有数字,失败,回溯,重新选择第3个数字

5、第3个数字选择3,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-3 = 0

6、target = 0,找到了一组解,继续回溯寻找其他解


public List<List<Integer>> combinationSum(int[] candidates, int target) {
		ArrayList<List<Integer>> result = new ArrayList<List<Integer>>();
		if(candidates == null) {
			return result;
		}
		ArrayList<Integer> temp = new ArrayList<Integer>();
		Arrays.sort(candidates);
		combinationSumSolution(candidates, target, 0, result, temp);
		return result;
    }
	
	private void combinationSumSolution(int[] candidates, int target, int index,
			ArrayList<List<Integer>> result, ArrayList<Integer> temp) {
		if(target == 0) {
			result.add(new ArrayList<Integer>(temp));
			return ;
		}
		
		for(int i=index; i<candidates.length &&
				target>=candidates[i] ; i++) {
			if(0==i || candidates[i]!= candidates[i-1]) {//忽略数组中的重复数字
				temp.add(candidates[i]);
				combinationSumSolution(candidates, target-candidates[i], i, result, temp);
				temp.remove(temp.size()-1);
			}
		}
	}





你可能感兴趣的:(Combination Sum)