l 主机操作系统:Windows 64 bit,双核4线程,主频2.2G,6G内存
l 虚拟软件:VMware® Workstation 9.0.0 build-812388
l 虚拟机操作系统:CentOS 64位,单核,1G内存
l JDK:1.7.0_55 64 bit
l Hadoop:1.1.2
集群包含三个节点:1个namenode、2个datanode,其中节点之间可以相互ping通。节点IP地址和主机名分布如下:
序号 |
IP地址 |
机器名 |
类型 |
用户名 |
运行进程 |
1 |
10.88.147.221 |
hadoop1 |
名称节点 |
hadoop |
NN、SNN、JobTracer |
2 |
10.88.147.222 |
hadoop2 |
数据节点 |
hadoop |
DN、TaskTracer |
3 |
10.88.147.223 |
hadoop3 |
数据节点 |
hadoop |
DN、TaskTracer |
所有节点均是CentOS6.5 64bit系统,防火墙均禁用,所有节点上均创建了一个hadoop用户,用户主目录是/usr/hadoop。所有节点上均创建了一个目录/usr/local/hadoop,并且拥有者是hadoop用户。
Pig是yahoo捐献给apache的一个项目,使用SQL-like语言,是在MapReduce上构建的一种高级查询语言,把一些运算编译进MapReduce模型的Map和Reduce中。Pig 有两种运行模式: Local 模式和 MapReduce 模式
l 本地模式:Pig运行于本地模式,只涉及到单独的一台计算机
l MapReduce模式:Pig运行于MapReduce模式,需要能访问一个Hadoop集群,并且需要装上HDFS
Pig的调用方式:
l Grunt shell方式:通过交互的方式,输入命令执行任务;
l Pig script方式:通过script脚本的方式来运行任务;
l 嵌入式方式:嵌入java源代码中,通过java调用来运行任务。
在Apache下载最新的Pig软件包,点击下载会推荐最快的镜像站点,以下为下载地址:http://mirror.bit.edu.cn/apache/pig/
把下载的pig-0.13.0.tar.gz安装包,使用SSH Secure File Transfer工具(第1、2作业周2.1.3.1介绍)上传到/home/hadoop/Downloads 目录下
在Downloads目中将pig解压缩
cd /home/hadoop/Downloads/
tar -xzvf pig-0.13.0.tar.gz
把pig-0.13.0目录移到/usr/local目录下
sudo mv pig-0.13.0 /usr/local
cd /usr/local
ls /usr/local
使用如下命令编辑/etc/profile文件:
sudo vi /etc/profile
设置pig的class路径和在path加入pig的路径,其中PIG_CLASSPATH参数是设置pig在MapReduce工作模式:
export PIG_HOME=/usr/local/pig-0.13.0
export PATH=$PATH:/usr/local/hadoop-1.1.2/bin:$PIG_HOME/bin
编译配置文件/etc/profile,并确认生效
source /etc/profile
重新登录终端,确保hadoop集群启动,键入pig命令,应该能看到pig连接到hadoop集群的信息并且进入了grunt shell命令行模式:
如果需要退出的话,在pig的grunt shell下键入quit即可。
在课程资源下载本周的作业素材access_log.rar,是一段dataguru的网站访问日志 请大家使用pig处理这个日志,计算出每个ip的点击次数,例如 123.24.56.57 13 24.53.23.123 7 34.56.78.120 20 .... 等等
注意:如果在$PIG_HOME/conf的pig.properties中添加如下配置:
fs.default.name=hdfs://hadoop:9000
mapred.job.tracker=hadoop:9001
那么在使用pig时可以路径可以直接从根目录开始写,而不用谢hdfs的全路径
// 加载HDFS中访问日志,使用空格进行分割,只加载ip列
a = LOAD 'hdfs://hadoop1:9000/usr/hadoop/in/access_log.txt' USING PigStorage(' ') AS (ip:chararray,t1:long,t2:long);
如果添加了上面红色的配置,也可以使用:
a1 = load '/usr/hadoop/in/access_log.txt' ...
查看处理完成的内容:
dump a;
// 按照ip进行分组,统计每个ip点击数
records_b = GROUP records BY ip;
注意:下面的'COUNT'要使用大写,小写的count pig不识别
records_c = FOREACH records_b GENERATE group,COUNT(records) AS click;
// 按照点击数排序,保留点击数前10个的ip数据
records_d = ORDER records_c by click DESC;
top10 = LIMIT records_d 10;
// 把生成的数据保存到HDFS的week8目录中
STORE top10 INTO 'hdfs://hadoop1:9000/usr/hadoop/week8';
另一个处理案例代码:
5.对wlan数据如何使用pig进行分析处理
5.1 把待处理的数据上传到HDFS中
5.2 把HDFS中的数据转换为pig可以处理的模式
A = LOAD '/wlan' AS (t0:long, msisdn:chararray, t2:chararray, t3:chararray, t4:chararray, t5:chararray, t6:long, t7:long, t8:long, t9:long, t10:chararray);
5.3 把里面的有用的字段抽取出来
B = FOREACH A GENERATE msisdn, t6, t7, t8, t9;
5.4 分组数据
C = GROUP B BY msisdn;
5.5 流量汇总
D = FOREACH C GENERATE group, SUM(B.t6), SUM(B.t7), SUM(B.t8), SUM(B.t9);
5.6 存储到HDFS中
STORE D INTO '/wlan_result';
使用SSH工具(参见第1、2周2.1.3.1Linux文件传输工具所描述)把提供的测试数据access_log.txt上传到本地目录/usr/local/hadoop-1.1.2/input中,然后调用hadoop上传本地文件命令把该文件传到/usr/hadoop/in目录中,如下图所示:
access_log.txt日志内容如下:
进入pig shell 命令行模式:
输入代码:
在执行过程中在JobTracker页面观察运行情况,链接地址为:http://hadoop1:50030/jobtracker.jsp
点击查看具体作业信息
可以观察到本次任务分为4个作业,每个作业一次在上一次作业的结果上进行计算
通过以下命令查看最后的结果:
hadoop fs -ls /usr/hadoop/week8
hadoop fs -cat /usr/hadoop/week8/part-r-00000