一:
public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { //将每一行拆分成一个个的单词,并肩<word,1>作为map方法的结果输出。 StringTokenizer itr = new StringTokenizer(value.toString()); // 测试其是否还有更多可用的标记 while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); /** * reduce函数的输入也是一个key/value的形式,不过它的value是一个迭代器的形式Iterable<IntWritable> values, * 也就是说reduce的输入是一个key对应一组的值的value,reduce也有context和map的context作用一致。 * */ public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] arg) throws Exception { //初始化Configuration,该类主要是读取mapreduce系统配置信息,这些信息包括hdfs还有mapreduce等。 Configuration conf = new Configuration(); //构建一个job, Job job = Job.getInstance(conf,"word count"); //装载程序员编写好的计算程序 job.setJarByClass(WordCount.class); //实现map函数,根据输入的<key,value>对生成中间结果。配置mapreduce如何运行map和reduce函数 job.setMapperClass(TokenizerMapper.class); //Combiner类,实现combine函数,合并中间结果中具有相同key值的键值对。 默认为null 即不合并中间结果。 job.setCombinerClass(IntSumReducer.class); //Reducer类 实现reduce函数 将中间结果合并,得到最终结果。 job.setReducerClass(IntSumReducer.class); //定义输出的key/value的类型,也就是最终存储在hdfs上结果文件的key/value的类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //第一行就是构建输入的数据文件,第二行是构建输出的数据文件, FileInputFormat.addInputPath(job, new Path("hdfs://192.168.226.129:9000/rootdir/mapreduce.txt")); FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.226.129:9000/rootdir/data/studytest/"+System.currentTimeMillis()+"/")); //如果job运行成功了,我们的程序就会正常退出 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
二:
public class WordCount1 { public static final IntWritable ONE = new IntWritable(1); public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String[] vs = value.toString().split("\\s"); for (String string : vs) { context.write(new Text(string) , ONE); } } } public static class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int count =0; for (IntWritable v : values) { count += v.get(); } context.write(key,new IntWritable(count) ); } } public static void main(String[] args) { try { Configuration conf = new Configuration(); Job job = Job.getInstance(conf,"word count"); job.setJarByClass(WordCount1.class); //实现map函数,根据输入的<key,value>对生成中间结果。 job.setMapperClass(WordCountMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(WordCountReduce.class); FileInputFormat.addInputPath(job, new Path("hdfs://192.168.226.129:9000/rootdir/mapreduce.txt")); FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.226.129:9000/rootdir/data/studytest/"+System.currentTimeMillis()+"/")); System.exit(job.waitForCompletion(true) ? 0 : 1); } catch (IllegalStateException e) { e.printStackTrace(); } catch (IllegalArgumentException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } }
例如:
输入:
xujun xujun xj , cxj xxxx cccc ddd xujun xj yyy jjj ccc yyy
输出:
, 1 ccc 1 cccc 1 cxj 1 ddd 1 jjj 1 xj 2 xujun 3 xxxx 1 yyy 2