- strings.ToLowerSpecial 使用详解
幸享龙枫
golanggolang
目录1.官方包2.支持版本3.官方说明4.作用5.实现原理6.推荐使用场景和不推荐使用场景推荐场景不推荐场景7.使用场景示例示例1:官方示例示例2:德语内容处理(保留ß不变)8.性能及同类对比性能特点对比其他方法(转换100KB土耳其语文本)9.总结特性说明对比总结表最终建议1.官方包是的,strings.ToLowerSpecial是Go语言标准库strings包中的函数,属于官方提供的核心功能
- 机器学习在智能仓储中的应用:库存管理与物流优化
Blossom.118
机器学习与人工智能机器学习人工智能深度学习机器人sklearntensorflowcnn
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着电子商务的蓬勃发展,仓储和物流行业面临着前所未有的挑战和机遇。智能仓储通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从货物入库到出库的全流程
- 元学习的认知思维棱镜
由数入道
AI辅助教学学习元学习思维模型认知框架思维棱镜
在学习这场马拉松中,大多数人只关注如何跑得更快(学习方法),但元学习关注的却是如何学会规划路线、调整呼吸、监测体能,甚至理解身体(大脑)的运作机制,从而跑得更远、更有效率。元学习(Meta-Learning)——“学会学习”的底层操作系统本质:元学习,简而言之,就是我们的大脑如何学习、如何反思学习过程、并如何优化学习策略的能力。它不是学习具体知识,而是学习如何学习知识本身。它好比你手中的智能手机,
- 文本生成新纪元:解锁大模型的企业级应用密码
数字化浪潮席卷各行业的当下,文本生成技术正经历着翻天覆地的变革,这场变革的幕后功臣正是大模型。今天,咱们就来深入探讨大模型在文本生成领域的奥秘,看看它如何赋能企业,又该怎样规避风险,实现价值最大化。技术跃迁:从笨拙规则到智能生成回首往昔,文本生成依靠规则模板与关键字替换,虽能实现基础自动化,却如机械舞者,动作生硬、缺乏灵动。业务稍有变动,规则需全面重构,耗时费力。随着N-gram等统计机器学习方法
- 跨区域智能电网负荷预测:基于 PaddleFL 的创新探索
暮雨哀尘
人工智能智能电网AIGCPaddleFL数据库python可视化
跨区域智能电网负荷预测:基于PaddleFL的创新探索摘要:本文聚焦跨区域智能电网负荷预测,提出基于PaddleFL框架的联邦学习方法,整合多地区智能电网数据,实现数据隐私保护下的高精度预测,为电网调度优化提供依据,推动智能电网发展。一、引言在当今社会,电力作为经济发展的命脉,其稳定供应对于保障社会生活的正常运转和生产的持续进行具有不可替代的重要性。而智能电网作为现代电力系统的重要发展方向,通过集
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 如何看待机器学习方法在超分子化学领域的日渐流行?
cda2024
机器学习人工智能
大家好,今天咱们来聊聊一个既时髦又接地气的话题:如何看待机器学习方法在超分子化学领域的日渐流行?想象一下,你是一位超分子化学家,正忙于设计一种新型的分子结构,这个结构需要具备特定的功能。传统的方法是通过反复实验和理论计算来优化这个结构,但过程可能非常耗时且复杂。而现在,借助机器学习,你可以更快、更准确地找到最优解。这就是为什么机器学习在超分子化学领域变得越来越受欢迎的原因之一。一、超分子化学是什么
- 助力您发SCI 机器学习(ML)在材料领域应用专题
YEcenfei
分子动力学催化材料机器学习人工智能python
第一天机器学习在材料与化学常见的方法理论内容1.机器学习概述2.材料与化学中的常见机器学习方法3.应用前沿实操内容Python基础1.开发环境搭建2.变量和数据类型3.列表4.if语句5.字典6.For和while循环实操内容Python基础(续)1.函数2.类和对象3.模块Python科学数据处理1.NumPy2.Pandas3.Matplotlib第二天机器学习材料与化学应用<
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- 集成学习基础:Bagging 原理与应用
大千AI助手
人工智能Python#OTHER集成学习机器学习人工智能算法决策树Bagging
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!Bagging介绍1.定义与全称:Bagging是BootstrapAggregating的缩写,中文常译为装袋法。它是一种并行式的集成学习方法。核心目标是通过构建多个基学习器的预测结果进行组合(通常是投票或平均),来获得比单一基学习器更稳定、更准确、
- 衡水中学状元数学学习资料完整攻略
向沙托夫问好
本文还有配套的精品资源,点击获取简介:《状元全科笔记衡水内部资料数学学习文档》提供了一个全面的数学学习资源,旨在通过衡水中学的教学经验和方法提升学生的数学成绩。资料包含基础知识、题型解析、模块训练、思维拓展和学习方法,引导学生深入理解数学概念,培养逻辑思维和解决问题的能力。文档结构清晰,内容详实,附带使用指南,帮助学生系统提升数学素养,实现学习效率和成绩的双重提高。1.状元学习方法分享在追求卓越成
- 大模型RLHF强化学习笔记(一):强化学习基础梳理Part1
Gravity!
大模型笔记大模型LLM算法机器学习强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.1Intro定义:强化学习是一种机器学习方法,需要智能体通过与环境交互学习最优策略基本要素:状态(State):智能体在决策过程中需要考虑的所有相关信息(环境描述)动作(Action):在环境中可以采取的行为策略(Policy):定义了在给定状态下智能体应该选择哪个动作,目标是最大化智能体的长期累积奖
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 黑客自学教程(非常详细)黑客零基础入门到精通,收藏这篇就够了
爱吃小石榴16
网络安全黑客技术黑客网络服务器运维android数据库web安全安全
新手如何通过自学黑客技术成为厉害的白帽黑客?我目前虽然算不上顶尖的白帽大佬,但自己在补天挖漏洞也能搞个1万多块钱。给大家分享一下我的学习方法,0基础也能上手学习,如果你能坚持学完,你也能成为厉害的白帽子!一、打好基础一上来就去玩各种工具的都是脚本小子,如果你是准备在技术这条路上走得长远,那这些必备的基础知识一定要学好。1.网络安全基础导论尤其是法律法规和发展方向,一定要对网络安全有清楚的认知!2.
- k近邻算法(kNearest Neighbors) 原理与代码实例讲解
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
k-近邻算法,聚类,分类,分离散数据,决策边界,邻域,机器学习,监督学习k-近邻算法(k-NearestNeighbors)-原理与代码实例讲解k-近邻算法(k-NearestNeighbors,简称kNN)是一种简单的监督学习方法,它在机器学习领域有着广泛的应用。kNN算法的核心思想是:在特征空间中,如果一个样本附近的k个最近邻样本的大多数属于某个类别,则该样本也属于这个类别。这种基于局部决策的
- 智能交通中的深度学习应用:从理论到实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络sklearn目标检测
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。在当今数字化时代,人工智能技术正以前所未有的速度改变着我们的生活,其中智能交通领域是人工智能技术大放异彩的重要舞台之一。深度学习作为人工智能的核心技术之一,为智能交通的
- 每日传习1:个人的《传习录》学习计划
良知即吾心
每日传习传习录心学学习
一直想系统的学习《传习录》,学习阳明心学,但却总觉得不到时候。经过了这几年的成长,我的心智更加成熟,心性也更加沉稳一些,感觉现在的自己有信心能把《传习录》系统的学完,于是就开始了传习录的每日学习。具体的学习方法暂定如下:第一轮:先把《传习录》的一篇内容手打到这里。这一步相当于手抄书,虽没有直接手抄的效果好,但是我的字实在太难看,手抄的话,说不定会抹杀我学习的热情。搞清楚文章中每个字的读音。通读若干
- Pytest快速入门指南:技巧总结与学习计划
Pytest快速入门指南:技巧总结与学习计划Pytest作为Python生态中最流行的测试框架之一,以其简洁灵活的特性广受开发者欢迎。本指南将为你提供Pytest的快速入门技巧、系统学习计划以及优质文档参考,帮助你高效掌握这一强大工具。一、Pytest核心优势与特点Pytest相比Python自带的unittest框架具有显著优势,这也是它成为Python测试领域事实标准的原因:简洁易用:测试用例
- 零基础入门Python:30天从小白到实战高手(附完整代码+项目案例)
全息架构师
Python实战项目大揭秘python开发语言
零基础入门Python:30天从小白到实战高手(附完整代码+项目案例)摘要:本文为技术小白量身打造Python学习路线,包含环境搭建、基础语法、核心库使用、实战项目开发全流程。每日学习计划+代码案例+避坑指南,助你快速掌握编程核心技能!关键词:Python入门、零基础编程、实战项目、学习路线、避坑指南一、为什么选择Python作为第一门编程语言?1.1Python的四大核心优势语法简洁:print
- Unity+物理引擎学习计划
这是个问题
unity学习游戏引擎
一、每日具体学习资源链接(前4周示范,后续可按需继续)第1周:Unity基础与C#入门天数学习内容资源链接1Unity界面介绍,安装配置Unity官方入门教程2创建项目,场景与GameObjectUnity官方场景与对象教程3C#基础语法(变量、函数)C#基础教程(菜鸟教程)4条件语句与循环C#条件与循环详解5Unity脚本创建与挂载Unity脚本基础6脚本生命周期(Start、Update)Un
- 文献调研[eeg溯源的深度学习方法](过程记录)
我要学脑机
#神经生物学原理深度学习人工智能
文章目录问题AI回答关键词组合搜索方式说明限定字段**1.AllFields(所有字段)****2.EEGsourcerecon(EEG源重建)****3.Title(标题)****4.Author(作者)****5.PublicationTitles(期刊/会议名称)****6.YearPublished(发表年份)****7.Affiliation(机构)****8.FundingAgency
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 04、谁发明了深度学习的方法,是怎么发明的?
深度学习的发展是多位研究者长期探索的结果,其核心方法的形成并非由单一人物“发明”,而是历经数十年理论积累与技术突破的产物。以下从关键人物、核心技术突破及历史背景三个维度,梳理深度学习方法的起源与发展脉络:一、深度学习的奠基者与关键贡献者1.GeoffreyHinton:从神经网络到深度学习的理论突破核心贡献:20世纪80年代,Hinton与DavidRumelhart等人重新引入并完善了反向传播算
- 【游戏测试】多语言/本地化测试-抽样测试
June bug
游戏测试游戏游戏测试多语言测试本地化测试经验分享
一、从可能出现显示问题的角度,多语言可以大致分为以下6类:字符集/编码支持类别(基础问题):单字节字符语言:如英语、法语、德语、西班牙语(西欧字符)、意大利语、葡萄牙语等。主要使用ASCII或Latin-1扩展字符集。问题相对较少,但非ASCII字符(特殊符号、带重音字母如é,ñ,ß,ø)如果编码处理不当或字体不支持,可能显示为乱码(�)、方块(□)或问号(?)。双字节字符语言:如中文**(简体G
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include