A local matrix has integer-typed row and column indices and double-typed values, stored on a single machine. MLlib supports dense matrices, whose entry values are stored in a single double array in column-major order, and sparse matrices, whose non-zero entry values are stored in the Compressed Sparse Column (CSC) format in column-major order. For example, the following dense matrix
局部矩阵由整数型行和列的索引和浮点数类型的值组成,存储在一个单独节点上。MLlib支持密集矩阵,entry值被存储在一个一维浮点数数组,以列为排序主键。而稀疏矩阵,non-zero entry值,以Compressed Sparse Column (CSC) 格式存储,以列主键排序。例如,下面的密集矩阵
|1.0 2.0|
|3.0 4.0|
|5.0 6.0|
is stored in a one-dimensional array [1.0, 3.0, 5.0, 2.0, 4.0, 6.0]
with the matrix size (3, 2)
.
被存储在一个一维数组 [1.0, 3.0, 5.0, 2.0, 4.0, 6.0]里,矩阵的size为(3,2)
Scala
The base class of local matrices is Matrix
, and we provide two implementations: DenseMatrix
, and SparseMatrix
. We recommend using the factory methods implemented in Matrices
to create local matrices. Remember, local matrices in MLlib are stored in column-major order.
局部矩阵的基类是Matrix,我们提供了两种实现:DenseMatrix
, and SparseMatrix
.
我们推荐使用Matrices 已经实现的工厂方法来创建局部矩阵。
记住,局部矩阵在MLlib中是以列排序存储的。
Refer to the Matrix
Scala docs and Matrices
Scala docs for details on the API.
更多信息请参见Matrix
Scala docs and Matrices
Scala docs API。
import org.apache.spark.mllib.linalg.{Matrix, Matrices} // Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0)) // Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0)) val sm: Matrix = Matrices.sparse(3, 2, Array(0, 1, 3), Array(0, 2, 1), Array(9, 6, 8))