上面好几章讲的是 其实CNN 训练不仅仅是图片 声音 文字 其他都是可以的,我从头到尾都没说过CNN只能用来训练图像。只是CNN在图像识别上效果非常显著 非常好。所以我就把CNN讲了好几章,后面讲讲DNN RNN/LSTM RBM等等 看空闲时间,这一章我们讲讲tensorflow训练的模型怎么系列化参数网络到模型文件里面,并使用模型数据来预测 分类数据。
在tensorflow中保存 模型 恢复模型的 类是tf.train.Saver() 默认 是所有的变量
当不传参数 默认就是所有的变量variable
保存模型
save(sess,save_path,...)
从文件中恢复模型
restore(sess,save_path,...)
save_path = saver.save(sess, "/root/alexnet.tfmodel")
保存
saver.restore(sess, "/root/alexnet.tfmodel")
恢复
此时 restore 恢复的是sess 这个 状态 ,你可以吧他看做时光机,把sess 的参数 恢复到 训练结束时的参数 这时候的sess
就已经可以用来进行预测
input_x = .... predictions = sess.run(model, feed_dict={x: input_x})
下面来修改alexnet 网络
# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.001 training_iters = 200000 batch_size = 64 display_step = 20 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.8 # Dropout, probability to keep units # tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) # dropout (keep probability) # Create custom model def conv2d(name, l_input, w, b): return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name) def max_pool(name, l_input, k): return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name) def norm(name, l_input, lsize=4): return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name) def customnet(_X, _weights, _biases, _dropout): # Reshape input picture _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # Convolution Layer conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1']) # Max Pooling (down-sampling) pool1 = max_pool('pool1', conv1, k=2) # Apply Normalization norm1 = norm('norm1', pool1, lsize=4) # Apply Dropout norm1 = tf.nn.dropout(norm1, _dropout) #conv1 image show tf.image_summary("conv1", conv1) # Convolution Layer conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2']) # Max Pooling (down-sampling) pool2 = max_pool('pool2', conv2, k=2) # Apply Normalization norm2 = norm('norm2', pool2, lsize=4) # Apply Dropout norm2 = tf.nn.dropout(norm2, _dropout) # Convolution Layer conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3']) # Max Pooling (down-sampling) pool3 = max_pool('pool3', conv3, k=2) # Apply Normalization norm3 = norm('norm3', pool3, lsize=4) # Apply Dropout norm3 = tf.nn.dropout(norm3, _dropout) #conv4 conv4 = conv2d('conv4', norm3, _weights['wc4'], _biases['bc4']) # Max Pooling (down-sampling) pool4 = max_pool('pool4', conv4, k=2) # Apply Normalization norm4 = norm('norm4', pool4, lsize=4) # Apply Dropout norm4 = tf.nn.dropout(norm4, _dropout) # Fully connected layer dense1 = tf.reshape(norm4, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') # Relu activation dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation # Output, class prediction out = tf.matmul(dense2, _weights['out']) + _biases['out'] return out # Store layers weight & bias weights = { 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])), 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])), 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])), 'wc4': tf.Variable(tf.random_normal([2, 2, 256, 512])), 'wd1': tf.Variable(tf.random_normal([2*2*512, 1024])), 'wd2': tf.Variable(tf.random_normal([1024, 1024])), 'out': tf.Variable(tf.random_normal([1024, 10])) } biases = { 'bc1': tf.Variable(tf.random_normal([64])), 'bc2': tf.Variable(tf.random_normal([128])), 'bc3': tf.Variable(tf.random_normal([256])), 'bc4': tf.Variable(tf.random_normal([512])), 'bd1': tf.Variable(tf.random_normal([1024])), 'bd2': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = customnet(x, weights, biases, keep_prob) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables init = tf.initialize_all_variables() # tf.scalar_summary("loss", cost) tf.scalar_summary("accuracy", accuracy) # Merge all summaries to a single operator merged_summary_op = tf.merge_all_summaries() saver = tf.train.Saver() # Launch the graph with tf.Session() as sess: sess.run(init) summary_writer = tf.train.SummaryWriter('/tmp/logs', graph_def=sess.graph_def) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) summary_writer.add_summary(summary_str, step) saver.save(sess, '/root/alexnet.tfmodel', step); step += 1 print "Optimization Finished!" # Calculate accuracy for 256 mnist test images print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
运行一下就可以了
在一个新的类 或者 其他里面使用
saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, '/root/alexnet.tfmodel') sess.run(....)