mmap详细解释

UNIX网络编程第二卷进程间通信对mmap函数进行了说明。该函数主要用途有三个:
1、将一个普通文件映射到内存中,通常在需要对文件进行频繁读写时使用,这样用内存读写取代I/O读写,以获得较高的性能;
2、将特殊文件进行匿名内存映射,可以为关联进程提供共享内存空间;
3、为无关联的进程提供共享内存空间,一般也是将一个普通文件映射到内存中。

函数:void *mmap(void *start,size_t length,int prot,int flags,int fd,off_t offsize);

参数start:指向欲映射的内存起始地址,通常设为 NULL,代表让系统自动选定地址,映射成功后返回该地址。

参数length:代表将文件中多大的部分映射到内存。

参数prot:映射区域的保护方式。可以为以下几种方式的组合:
PROT_EXEC 映射区域可被执行
PROT_READ 映射区域可被读取
PROT_WRITE 映射区域可被写入
PROT_NONE 映射区域不能存取

参数flags:影响映射区域的各种特性。在调用mmap()时必须要指定MAP_SHARED 或MAP_PRIVATE。
MAP_FIXED 如果参数start所指的地址无法成功建立映射时,则放弃映射,不对地址做修正。通常不鼓励用此旗标。
MAP_SHARED对映射区域的写入数据会复制回文件内,而且允许其他映射该文件的进程共享。
MAP_PRIVATE 对映射区域的写入操作会产生一个映射文件的复制,即私人的“写入时复制”(copy on write)对此区域作的任何修改都不会写回原来的文件内容。
MAP_ANONYMOUS建立匿名映射。此时会忽略参数fd,不涉及文件,而且映射区域无法和其他进程共享。
MAP_DENYWRITE只允许对映射区域的写入操作,其他对文件直接写入的操作将会被拒绝。
MAP_LOCKED 将映射区域锁定住,这表示该区域不会被置换(swap)。

参数fd:要映射到内存中的文件描述符。如果使用匿名内存映射时,即flags中设置了MAP_ANONYMOUS,fd设为-1。有些系统不支持匿名内存映射,则可以使用fopen打开/dev/zero文件,然后对该文件进行映射,可以同样达到匿名内存映射的效果。

参数offset:文件映射的偏移量,通常设置为0,代表从文件最前方开始对应,offset必须是分页大小的整数倍。

返回值:

若映射成功则返回映射区的内存起始地址,否则返回MAP_FAILED(-1),错误原因存于errno 中。

错误代码:

EBADF 参数fd 不是有效的文件描述词
EACCES 存取权限有误。如果是MAP_PRIVATE 情况下文件必须可读,使用MAP_SHARED则要有PROT_WRITE以及该文件要能写入。
EINVAL 参数start、length 或offset有一个不合法。
EAGAIN 文件被锁住,或是有太多内存被锁住。
ENOMEM 内存不足。

系统调用mmap()用于共享内存的两种方式:

(1)使用普通文件提供的内存映射:

适用于任何进程之间。此时,需要打开或创建一个文件,然后再调用mmap()

典型调用代码如下:

fd=open(name, flag, mode); if(fd<0) ...

ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0);

通过mmap()实现共享内存的通信方式有许多特点和要注意的地方,可以参看UNIX网络编程第二卷。

(2)使用特殊文件提供匿名内存映射:

适用于具有亲缘关系的进程之间。由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用 fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区 域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可。



共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式, 因为进程可以直接读写内存,而不需要任何

数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则

只拷贝两次数据: 一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内

存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直

到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映

射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。

 

一. 传统文件访问

UNIX访问文件的传统方法是用open打开它们, 如果有多个进程访问同一个文件, 则每一个进程在自己的地址空间都包含有该

文件的副本,这不必要地浪费了存储空间. 下图说明了两个进程同时读一个文件的同一页的情形. 系统要将该页从磁盘读到高

速缓冲区中, 每个进程再执行一个存储器内的复制操作将数据从高速缓冲区读到自己的地址空间.

mmap详细解释_第1张图片


二. 共享存储映射

现在考虑另一种处理方法: 进程A和进程B都将该页映射到自己的地址空间, 当进程A第一次访问该页中的数据时, 它生成一

个缺页中断. 内核此时读入这一页到内存并更新页表使之指向它.以后, 当进程B访问同一页面而出现缺页中断时, 该页已经在

内存, 内核只需要将进程B的页表登记项指向次页即可. 如下图所示:

mmap详细解释_第2张图片

三、mmap()及其相关系统调用

mmap()系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以向访

问普通内存一样对文件进行访问,不必再调用read(),write()等操作。

 

mmap()系统调用形式如下:

void* mmap ( void * addr , size_t len , int prot , int flags , int fd , off_t offset ) 

mmap的作用是映射文件描述符fd指定文件的 [off,off + len]区域至调用进程的[addr, addr + len]的内存区域, 如下图所示:

mmap详细解释_第3张图片


参数fd为即将映射到进程空间的文件描述字,一般由open()返回,同时,fd可以指定为-1,此时须指定flags参数中的MAP_ANON,表明进行的是匿名映射(不涉及具体的文件名,避免了文件的创建及打开,很显然只能用于具有亲缘关系的进程间通信)。

len是映射到调用进程地址空间的字节数,它从被映射文件开头offset个字节开始算起。

prot 参数指定共享内存的访问权限。可取如下几个值的或:PROT_READ(可读) , PROT_WRITE (可写), PROT_EXEC (可执行), PROT_NONE(不可访问)。

flags由以下几个常值指定:MAP_SHARED , MAP_PRIVATE , MAP_FIXED,其中,MAP_SHARED , MAP_PRIVATE必选其一,而MAP_FIXED则不推荐使用。

offset参数一般设为0,表示从文件头开始映射。

参数addr指定文件应被映射到进程空间的起始地址,一般被指定一个空指针,此时选择起始地址的任务留给内核来完成。函数的返回值为最后文件映射到进程空间的地址,进程可直接操作起始地址为该值的有效地址。


四. mmap的两个例子

范例中使用的测试文件 data.txt:

aaaaaaaaa
bbbbbbbbb
ccccccccc
ddddddddd

1 通过共享映射的方式修改文件

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <error.h>

#define BUF_SIZE 100

int main(int argc, char **argv)
{
    int fd, nread, i;
    struct stat sb;
    char *mapped, buf[BUF_SIZE];

    for (i = 0; i < BUF_SIZE; i++) {
        buf[i] = '#';
    }

    /* 打开文件 */
    if ((fd = open(argv[1], O_RDWR)) < 0) {
        perror("open");
    }

    /* 获取文件的属性 */
    if ((fstat(fd, &sb)) == -1) {
        perror("fstat");
    }

    /* 将文件映射至进程的地址空间 */
    if ((mapped = (char *)mmap(NULL, sb.st_size, PROT_READ | 
                    PROT_WRITE, MAP_SHARED, fd, 0)) == (void *)-1) {
        perror("mmap");
    }

    /* 映射完后, 关闭文件也可以操纵内存 */
    close(fd);

    printf("%s", mapped);

    /* 修改一个字符,同步到磁盘文件 */
    mapped[20] = '9';
    if ((msync((void *)mapped, sb.st_size, MS_SYNC)) == -1) {
        perror("msync");
    }

    /* 释放存储映射区 */
    if ((munmap((void *)mapped, sb.st_size)) == -1) {
        perror("munmap");
    }

    return 0;
}

2 私有映射无法修改文件

/* 将文件映射至进程的地址空间 */
if ((mapped = (char *)mmap(NULL, sb.st_size, PROT_READ | 
                    PROT_WRITE, MAP_PRIVATE , fd, 0)) == (void *)-1) {
    perror("mmap");
}

五. 使用共享映射实现两个进程之间的通信
两个程序映射同一个文件到自己的地址空间, 进程A先运行, 每隔两秒读取映射区域, 看是否发生变化. 
进程B后运行, 它修改映射区域, 然后推出, 此时进程A能够观察到存储映射区的变化
进程A的代码:
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <error.h>

#define BUF_SIZE 100

int main(int argc, char **argv)
{
    int fd, nread, i;
    struct stat sb;
    char *mapped, buf[BUF_SIZE];

    for (i = 0; i < BUF_SIZE; i++) {
        buf[i] = '#';
    }

    /* 打开文件 */
    if ((fd = open(argv[1], O_RDWR)) < 0) {
        perror("open");
    }

    /* 获取文件的属性 */
    if ((fstat(fd, &sb)) == -1) {
        perror("fstat");
    }

    /* 将文件映射至进程的地址空间 */
    if ((mapped = (char *)mmap(NULL, sb.st_size, PROT_READ | 
                    PROT_WRITE, MAP_SHARED, fd, 0)) == (void *)-1) {
        perror("mmap");
    }

    /* 文件已在内存, 关闭文件也可以操纵内存 */
    close(fd);
    
    /* 每隔两秒查看存储映射区是否被修改 */
    while (1) {
        printf("%s\n", mapped);
        sleep(2);
    }

    return 0;
}

进程B的代码:
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <error.h>

#define BUF_SIZE 100

int main(int argc, char **argv)
{
    int fd, nread, i;
    struct stat sb;
    char *mapped, buf[BUF_SIZE];

    for (i = 0; i < BUF_SIZE; i++) {
        buf[i] = '#';
    }

    /* 打开文件 */
    if ((fd = open(argv[1], O_RDWR)) < 0) {
        perror("open");
    }

    /* 获取文件的属性 */
    if ((fstat(fd, &sb)) == -1) {
        perror("fstat");
    }

    /* 私有文件映射将无法修改文件 */
    if ((mapped = (char *)mmap(NULL, sb.st_size, PROT_READ | 
                    PROT_WRITE, MAP_PRIVATE, fd, 0)) == (void *)-1) {
        perror("mmap");
    }

    /* 映射完后, 关闭文件也可以操纵内存 */
    close(fd);

    /* 修改一个字符 */
    mapped[20] = '9';
 
    return 0;
}


六. 通过匿名映射实现父子进程通信

#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUF_SIZE 100

int main(int argc, char** argv)
{
    char    *p_map;

    /* 匿名映射,创建一块内存供父子进程通信 */
    p_map = (char *)mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
            MAP_SHARED | MAP_ANONYMOUS, -1, 0);

    if(fork() == 0) {
        sleep(1);
        printf("child got a message: %s\n", p_map);
        sprintf(p_map, "%s", "hi, dad, this is son");
        munmap(p_map, BUF_SIZE); //实际上,进程终止时,会自动解除映射。
        exit(0);
    }

    sprintf(p_map, "%s", "hi, this is father");
    sleep(2);
    printf("parent got a message: %s\n", p_map);

    return 0;
}

七. 对mmap()返回地址的访问
linux采用的是页式管理机制。对于用mmap()映射普通文件来说,进程会在自己的地址空间新增一块空间,空间大
小由mmap()的len参数指定,注意,进程并不一定能够对全部新增空间都能进行有效访问。进程能够访问的有效地址大小取决于文件被映射部分的大小。简单的说,能够容纳文件被映射部分大小的最少页面个数决定了 进程从mmap()返回的地址开始,能够有效访问的地址空间大小。超过这个空间大小,内核会根据超过的严重程度返回发送不同的信号给进程。可用如下图示说明:
mmap详细解释_第4张图片

总结一下就是, 文件大小, mmap的参数 len 都不能决定进程能访问的大小, 而是容纳文件被映射部分的最小页面数决定

进程能访问的大小. 下面看一个实例:

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char** argv)
{
    int fd,i;
    int pagesize,offset;
    char *p_map;
    struct stat sb;

    /* 取得page size */
    pagesize = sysconf(_SC_PAGESIZE);
    printf("pagesize is %d\n",pagesize);

    /* 打开文件 */
    fd = open(argv[1], O_RDWR, 00777);
    fstat(fd, &sb);
    printf("file size is %zd\n", (size_t)sb.st_size);

    offset = 0;	
    p_map = (char *)mmap(NULL, pagesize * 2, PROT_READ|PROT_WRITE, 
            MAP_SHARED, fd, offset);
    close(fd);
    
    p_map[sb.st_size] = '9';  /* 导致总线错误 */
    p_map[pagesize] = '9';    /* 导致段错误 */

    munmap(p_map, pagesize * 2);

    return 0;
}



你可能感兴趣的:(IO,内存)