/* * @(#)Object.java 1.73 06/03/30 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.lang; /** * Class <code>Object</code> is the root of the class hierarchy. * Every class has <code>Object</code> as a superclass. All objects, * including arrays, implement the methods of this class. * * @author unascribed * @version 1.73, 03/30/06 * @see java.lang.Class * @since JDK1.0 */ public class Object { private static native void registerNatives(); static { registerNatives(); } /** * @Aragorn * native方法并不需要提供实现体,而是由非java语言在代码外面外面实现的 * static静态代码块是在第一次实例化该类的时候执行一次,并且只执行一次,给别 * 的变量new该类也不会再执行了 */ /** * Returns the runtime class of this {@code Object}. The returned * {@code Class} object is the object that is locked by {@code * static synchronized} methods of the represented class. * * <p><b>The actual result type is {@code Class<? extends |X|>} * where {@code |X|} is the erasure of the static type of the * expression on which {@code getClass} is called.</b> For * example, no cast is required in this code fragment:</p> * * <p> * {@code Number n = 0; }<br> * {@code Class<? extends Number> c = n.getClass(); } * </p> * * @return The {@code Class} object that represents the runtime * class of this object. * @see <a href="http://java.sun.com/docs/books/jls/">The Java * Language Specification, Third Edition (15.8.2 Class * Literals)</a> */ public final native Class<?> getClass(); /** * Returns a hash code value for the object. This method is * supported for the benefit of hashtables such as those provided by * <code>java.util.Hashtable</code>. * <p> * The general contract of <code>hashCode</code> is: * <ul> * <li>Whenever it is invoked on the same object more than once during * an execution of a Java application, the <tt>hashCode</tt> method * must consistently return the same integer, provided no information * used in <tt>equals</tt> comparisons on the object is modified. * This integer need not remain consistent from one execution of an * application to another execution of the same application. * <li>If two objects are equal according to the <tt>equals(Object)</tt> * method, then calling the <code>hashCode</code> method on each of * the two objects must produce the same integer result. * <li>It is <em>not</em> required that if two objects are unequal * according to the {@link java.lang.Object#equals(java.lang.Object)} * method, then calling the <tt>hashCode</tt> method on each of the * two objects must produce distinct integer results. However, the * programmer should be aware that producing distinct integer results * for unequal objects may improve the performance of hashtables. * </ul> * <p> * As much as is reasonably practical, the hashCode method defined by * class <tt>Object</tt> does return distinct integers for distinct * objects. (This is typically implemented by converting the internal * address of the object into an integer, but this implementation * technique is not required by the * Java<font size="-2"><sup>TM</sup></font> programming language.) * * @return a hash code value for this object. * @see java.lang.Object#equals(java.lang.Object) * @see java.util.Hashtable */ public native int hashCode(); /** * Indicates whether some other object is "equal to" this one. * <p> * The <code>equals</code> method implements an equivalence relation * on non-null object references: * <ul> * <li>It is <i>reflexive</i>: for any non-null reference value * <code>x</code>, <code>x.equals(x)</code> should return * <code>true</code>. * <li>It is <i>symmetric</i>: for any non-null reference values * <code>x</code> and <code>y</code>, <code>x.equals(y)</code> * should return <code>true</code> if and only if * <code>y.equals(x)</code> returns <code>true</code>. * <li>It is <i>transitive</i>: for any non-null reference values * <code>x</code>, <code>y</code>, and <code>z</code>, if * <code>x.equals(y)</code> returns <code>true</code> and * <code>y.equals(z)</code> returns <code>true</code>, then * <code>x.equals(z)</code> should return <code>true</code>. * <li>It is <i>consistent</i>: for any non-null reference values * <code>x</code> and <code>y</code>, multiple invocations of * <tt>x.equals(y)</tt> consistently return <code>true</code> * or consistently return <code>false</code>, provided no * information used in <code>equals</code> comparisons on the * objects is modified. * <li>For any non-null reference value <code>x</code>, * <code>x.equals(null)</code> should return <code>false</code>. * </ul> * <p> * The <tt>equals</tt> method for class <code>Object</code> implements * the most discriminating possible equivalence relation on objects; * that is, for any non-null reference values <code>x</code> and * <code>y</code>, this method returns <code>true</code> if and only * if <code>x</code> and <code>y</code> refer to the same object * (<code>x == y</code> has the value <code>true</code>). * <p> * Note that it is generally necessary to override the <tt>hashCode</tt> * method whenever this method is overridden, so as to maintain the * general contract for the <tt>hashCode</tt> method, which states * that equal objects must have equal hash codes. * * @param obj the reference object with which to compare. * @return <code>true</code> if this object is the same as the obj * argument; <code>false</code> otherwise. * @see #hashCode() * @see java.util.Hashtable */ public boolean equals(Object obj) { return (this == obj); } /** * Creates and returns a copy of this object. The precise meaning * of "copy" may depend on the class of the object. The general * intent is that, for any object <tt>x</tt>, the expression: * <blockquote> * <pre> * x.clone() != x</pre></blockquote> * will be true, and that the expression: * <blockquote> * <pre> * x.clone().getClass() == x.getClass()</pre></blockquote> * will be <tt>true</tt>, but these are not absolute requirements. * While it is typically the case that: * <blockquote> * <pre> * x.clone().equals(x)</pre></blockquote> * will be <tt>true</tt>, this is not an absolute requirement. * <p> * By convention, the returned object should be obtained by calling * <tt>super.clone</tt>. If a class and all of its superclasses (except * <tt>Object</tt>) obey this convention, it will be the case that * <tt>x.clone().getClass() == x.getClass()</tt>. * <p> * By convention, the object returned by this method should be independent * of this object (which is being cloned). To achieve this independence, * it may be necessary to modify one or more fields of the object returned * by <tt>super.clone</tt> before returning it. Typically, this means * copying any mutable objects that comprise the internal "deep structure" * of the object being cloned and replacing the references to these * objects with references to the copies. If a class contains only * primitive fields or references to immutable objects, then it is usually * the case that no fields in the object returned by <tt>super.clone</tt> * need to be modified. * <p> * The method <tt>clone</tt> for class <tt>Object</tt> performs a * specific cloning operation. First, if the class of this object does * not implement the interface <tt>Cloneable</tt>, then a * <tt>CloneNotSupportedException</tt> is thrown. Note that all arrays * are considered to implement the interface <tt>Cloneable</tt>. * Otherwise, this method creates a new instance of the class of this * object and initializes all its fields with exactly the contents of * the corresponding fields of this object, as if by assignment; the * contents of the fields are not themselves cloned. Thus, this method * performs a "shallow copy" of this object, not a "deep copy" operation. * <p> * The class <tt>Object</tt> does not itself implement the interface * <tt>Cloneable</tt>, so calling the <tt>clone</tt> method on an object * whose class is <tt>Object</tt> will result in throwing an * exception at run time. * * @return a clone of this instance. * @exception CloneNotSupportedException if the object's class does not * support the <code>Cloneable</code> interface. Subclasses * that override the <code>clone</code> method can also * throw this exception to indicate that an instance cannot * be cloned. * @see java.lang.Cloneable */ protected native Object clone() throws CloneNotSupportedException; /** * Returns a string representation of the object. In general, the * <code>toString</code> method returns a string that * "textually represents" this object. The result should * be a concise but informative representation that is easy for a * person to read. * It is recommended that all subclasses override this method. * <p> * The <code>toString</code> method for class <code>Object</code> * returns a string consisting of the name of the class of which the * object is an instance, the at-sign character `<code>@</code>', and * the unsigned hexadecimal representation of the hash code of the * object. In other words, this method returns a string equal to the * value of: * <blockquote> * <pre> * getClass().getName() + '@' + Integer.toHexString(hashCode()) * </pre></blockquote> * * @return a string representation of the object. */ public String toString() { return getClass().getName() + "@" + Integer.toHexString(hashCode()); } /** * Wakes up a single thread that is waiting on this object's * monitor. If any threads are waiting on this object, one of them * is chosen to be awakened. The choice is arbitrary and occurs at * the discretion of the implementation. A thread waits on an object's * monitor by calling one of the <code>wait</code> methods. * <p> * The awakened thread will not be able to proceed until the current * thread relinquishes the lock on this object. The awakened thread will * compete in the usual manner with any other threads that might be * actively competing to synchronize on this object; for example, the * awakened thread enjoys no reliable privilege or disadvantage in being * the next thread to lock this object. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. A thread becomes the owner of the * object's monitor in one of three ways: * <ul> * <li>By executing a synchronized instance method of that object. * <li>By executing the body of a <code>synchronized</code> statement * that synchronizes on the object. * <li>For objects of type <code>Class,</code> by executing a * synchronized static method of that class. * </ul> * <p> * Only one thread at a time can own an object's monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @see java.lang.Object#notifyAll() * @see java.lang.Object#wait() */ public final native void notify(); /** * Wakes up all threads that are waiting on this object's monitor. A * thread waits on an object's monitor by calling one of the * <code>wait</code> methods. * <p> * The awakened threads will not be able to proceed until the current * thread relinquishes the lock on this object. The awakened threads * will compete in the usual manner with any other threads that might * be actively competing to synchronize on this object; for example, * the awakened threads enjoy no reliable privilege or disadvantage in * being the next thread to lock this object. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. See the <code>notify</code> method for a * description of the ways in which a thread can become the owner of * a monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @see java.lang.Object#notify() * @see java.lang.Object#wait() */ public final native void notifyAll(); /** * Causes the current thread to wait until either another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object, or a * specified amount of time has elapsed. * <p> * The current thread must own this object's monitor. * <p> * This method causes the current thread (call it <var>T</var>) to * place itself in the wait set for this object and then to relinquish * any and all synchronization claims on this object. Thread <var>T</var> * becomes disabled for thread scheduling purposes and lies dormant * until one of four things happens: * <ul> * <li>Some other thread invokes the <tt>notify</tt> method for this * object and thread <var>T</var> happens to be arbitrarily chosen as * the thread to be awakened. * <li>Some other thread invokes the <tt>notifyAll</tt> method for this * object. * <li>Some other thread {@linkplain Thread#interrupt() interrupts} * thread <var>T</var>. * <li>The specified amount of real time has elapsed, more or less. If * <tt>timeout</tt> is zero, however, then real time is not taken into * consideration and the thread simply waits until notified. * </ul> * The thread <var>T</var> is then removed from the wait set for this * object and re-enabled for thread scheduling. It then competes in the * usual manner with other threads for the right to synchronize on the * object; once it has gained control of the object, all its * synchronization claims on the object are restored to the status quo * ante - that is, to the situation as of the time that the <tt>wait</tt> * method was invoked. Thread <var>T</var> then returns from the * invocation of the <tt>wait</tt> method. Thus, on return from the * <tt>wait</tt> method, the synchronization state of the object and of * thread <tt>T</tt> is exactly as it was when the <tt>wait</tt> method * was invoked. * <p> * A thread can also wake up without being notified, interrupted, or * timing out, a so-called <i>spurious wakeup</i>. While this will rarely * occur in practice, applications must guard against it by testing for * the condition that should have caused the thread to be awakened, and * continuing to wait if the condition is not satisfied. In other words, * waits should always occur in loops, like this one: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(timeout); * ... // Perform action appropriate to condition * } * </pre> * (For more information on this topic, see Section 3.2.3 in Doug Lea's * "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, * 2000), or Item 50 in Joshua Bloch's "Effective Java Programming * Language Guide" (Addison-Wesley, 2001). * * <p>If the current thread is {@linkplain java.lang.Thread#interrupt() * interrupted} by any thread before or while it is waiting, then an * <tt>InterruptedException</tt> is thrown. This exception is not * thrown until the lock status of this object has been restored as * described above. * * <p> * Note that the <tt>wait</tt> method, as it places the current thread * into the wait set for this object, unlocks only this object; any * other objects on which the current thread may be synchronized remain * locked while the thread waits. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. See the <code>notify</code> method for a * description of the ways in which a thread can become the owner of * a monitor. * * @param timeout the maximum time to wait in milliseconds. * @exception IllegalArgumentException if the value of timeout is * negative. * @exception IllegalMonitorStateException if the current thread is not * the owner of the object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. * @see java.lang.Object#notify() * @see java.lang.Object#notifyAll() */ public final native void wait(long timeout) throws InterruptedException; /** * Causes the current thread to wait until another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object, or * some other thread interrupts the current thread, or a certain * amount of real time has elapsed. * <p> * This method is similar to the <code>wait</code> method of one * argument, but it allows finer control over the amount of time to * wait for a notification before giving up. The amount of real time, * measured in nanoseconds, is given by: * <blockquote> * <pre> * 1000000*timeout+nanos</pre></blockquote> * <p> * In all other respects, this method does the same thing as the * method {@link #wait(long)} of one argument. In particular, * <tt>wait(0, 0)</tt> means the same thing as <tt>wait(0)</tt>. * <p> * The current thread must own this object's monitor. The thread * releases ownership of this monitor and waits until either of the * following two conditions has occurred: * <ul> * <li>Another thread notifies threads waiting on this object's monitor * to wake up either through a call to the <code>notify</code> method * or the <code>notifyAll</code> method. * <li>The timeout period, specified by <code>timeout</code> * milliseconds plus <code>nanos</code> nanoseconds arguments, has * elapsed. * </ul> * <p> * The thread then waits until it can re-obtain ownership of the * monitor and resumes execution. * <p> * As in the one argument version, interrupts and spurious wakeups are * possible, and this method should always be used in a loop: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(timeout, nanos); * ... // Perform action appropriate to condition * } * </pre> * This method should only be called by a thread that is the owner * of this object's monitor. See the <code>notify</code> method for a * description of the ways in which a thread can become the owner of * a monitor. * * @param timeout the maximum time to wait in milliseconds. * @param nanos additional time, in nanoseconds range * 0-999999. * @exception IllegalArgumentException if the value of timeout is * negative or the value of nanos is * not in the range 0-999999. * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. */ public final void wait(long timeout, int nanos) throws InterruptedException { if (timeout < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (nanos < 0 || nanos > 999999) { throw new IllegalArgumentException( "nanosecond timeout value out of range"); } if (nanos >= 500000 || (nanos != 0 && timeout == 0)) { timeout++; } wait(timeout); } /** * Causes the current thread to wait until another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object. * In other words, this method behaves exactly as if it simply * performs the call <tt>wait(0)</tt>. * <p> * The current thread must own this object's monitor. The thread * releases ownership of this monitor and waits until another thread * notifies threads waiting on this object's monitor to wake up * either through a call to the <code>notify</code> method or the * <code>notifyAll</code> method. The thread then waits until it can * re-obtain ownership of the monitor and resumes execution. * <p> * As in the one argument version, interrupts and spurious wakeups are * possible, and this method should always be used in a loop: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(); * ... // Perform action appropriate to condition * } * </pre> * This method should only be called by a thread that is the owner * of this object's monitor. See the <code>notify</code> method for a * description of the ways in which a thread can become the owner of * a monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of the object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. * @see java.lang.Object#notify() * @see java.lang.Object#notifyAll() */ public final void wait() throws InterruptedException { wait(0); } /** * Called by the garbage collector on an object when garbage collection * determines that there are no more references to the object. * A subclass overrides the <code>finalize</code> method to dispose of * system resources or to perform other cleanup. * <p> * The general contract of <tt>finalize</tt> is that it is invoked * if and when the Java<font size="-2"><sup>TM</sup></font> virtual * machine has determined that there is no longer any * means by which this object can be accessed by any thread that has * not yet died, except as a result of an action taken by the * finalization of some other object or class which is ready to be * finalized. The <tt>finalize</tt> method may take any action, including * making this object available again to other threads; the usual purpose * of <tt>finalize</tt>, however, is to perform cleanup actions before * the object is irrevocably discarded. For example, the finalize method * for an object that represents an input/output connection might perform * explicit I/O transactions to break the connection before the object is * permanently discarded. * <p> * The <tt>finalize</tt> method of class <tt>Object</tt> performs no * special action; it simply returns normally. Subclasses of * <tt>Object</tt> may override this definition. * <p> * The Java programming language does not guarantee which thread will * invoke the <tt>finalize</tt> method for any given object. It is * guaranteed, however, that the thread that invokes finalize will not * be holding any user-visible synchronization locks when finalize is * invoked. If an uncaught exception is thrown by the finalize method, * the exception is ignored and finalization of that object terminates. * <p> * After the <tt>finalize</tt> method has been invoked for an object, no * further action is taken until the Java virtual machine has again * determined that there is no longer any means by which this object can * be accessed by any thread that has not yet died, including possible * actions by other objects or classes which are ready to be finalized, * at which point the object may be discarded. * <p> * The <tt>finalize</tt> method is never invoked more than once by a Java * virtual machine for any given object. * <p> * Any exception thrown by the <code>finalize</code> method causes * the finalization of this object to be halted, but is otherwise * ignored. * * @throws Throwable the <code>Exception</code> raised by this method */ protected void finalize() throws Throwable { } }